Return to search

Análise bayesiana objetiva para as distribuições normal generalizada e lognormal generalizada

Made available in DSpace on 2016-06-02T20:04:53Z (GMT). No. of bitstreams: 1
6424.pdf: 5426262 bytes, checksum: 82bb9386f85845b0d3db787265ea8236 (MD5)
Previous issue date: 2014-11-21 / The Generalized Normal (GN) and Generalized lognormal (logGN) distributions are flexible for accommodating features present in the data that are not captured by traditional distribution, such as the normal and the lognormal ones, respectively. These distributions are considered to be tools for the reduction of outliers and for the obtention of robust estimates. However, computational problems have always been the major obstacle to obtain the effective use of these distributions. This paper proposes the Bayesian reference analysis methodology to estimate the GN and logGN. The reference prior for a possible order of the model parameters is obtained. It is shown that the reference prior leads to a proper posterior distribution for all the proposed model. The development of Monte Carlo Markov Chain (MCMC) is considered for inference purposes. To detect possible influential observations in the models considered, the Bayesian method of influence analysis on a case based on the Kullback-Leibler divergence is used. In addition, a scale mixture of uniform representation of the GN and logGN distributions are exploited, as an alternative method in order, to allow the development of efficient Gibbs sampling algorithms. Simulation studies were performed to analyze the frequentist properties of the estimation procedures. Real data applications demonstrate the use of the proposed models. / As distribuições normal generalizada (NG) e lognormal generalizada (logNG) são flexíveis por acomodarem características presentes nos dados que não são capturadas por distribuições tradicionais, como a normal e a lognormal, respectivamente. Essas distribuições são consideradas ferramentas para reduzir as observações aberrantes e obter estimativas robustas. Entretanto o maior obstáculo para a utilização eficiente dessas distribuições tem sido os problemas computacionais. Este trabalho propõe a metodologia da análise de referência Bayesiana para estimar os parâmetros dos modelos NG e logNG. A função a priori de referência para uma possível ordem dos parâmetros do modelo é obtida. Mostra-se que a função a priori de referência conduz a uma distribuição a posteriori própria, em todos os modelos propostos. Para fins de inferência, é considerado o desenvolvimento de métodos Monte Carlo em Cadeias de Markov (MCMC). Para detectar possíveis observações influentes nos modelos considerados, é utilizado o método Bayesiano de análise de influência caso a caso, baseado na divergência de Kullback-Leibler. Além disso, uma representação de mistura de escala uniforme para as distribuições NG e logNG é utilizada, como um método alternativo, para permitir o desenvolvimento de algoritmos de amostrador de Gibbs. Estudos de simulação foram desenvolvidos para analisar as propriedades frequentistas dos processos de estimação. Aplicações a conjuntos de dados reais mostraram a aplicabilidade dos modelos propostos.

Identiferoai:union.ndltd.org:IBICT/oai:repositorio.ufscar.br:ufscar/4495
Date21 November 2014
CreatorsJesus, Sandra Rêgo de
ContributorsTomazella, Vera Lucia Damasceno
PublisherUniversidade Federal de São Carlos, Programa de Pós-graduação em Estatística, UFSCar, BR
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguagePortuguese
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis
Formatapplication/pdf
Sourcereponame:Repositório Institucional da UFSCAR, instname:Universidade Federal de São Carlos, instacron:UFSCAR
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0028 seconds