Return to search

A Mycorrhizal Model for Transactive Energy Markets

Mycorrhizal Networks (MNs) facilitate the exchange of resources including energy, water, nutrients, and information between trees and plants in forest ecosystems. This work explored MNs as an inspiration for new market models in transactive energy networks, which similarly involve exchanges of energy and information between buildings in local communities. Specific insights from the literature on the structure and function of MNs were translated into an energy model with the aim of addressing challenges associated with the proliferation of distributed energy resources (DERs) at the grid edge and the incorporation of DER aggregations into wholesale energy markets. First, a systematic review of bio-inspired computing interventions applied to microgrids and their interactions with modern energy markets established a technical knowledge base within the context of distributed electrical systems. Second, a bio-inspired design process built on this knowledge base to yield a structural and functional blueprint for a computational mycorrhizal energy market simulation. Lastly, that computational model was implemented and simulated on a blockchain-compatible, multi-agent software platform to determine the effect that mycorrhizal strategies have on transactive energy market performance. The structural translation of a mapped ectomycorrhizal network of Douglas-firs in Oregon, USA called the 'wood-wide web' created an effective framework for the organization of a novel mycorrhizal energy market model that enabled participating buildings to redistribute percentages of their energy assets on different competing exchanges throughout a series of week-long simulations. No significant changes in functional performance –- as determined by economic, technical, and ecological metrics – were observed when the mycorrhizal results were compared to those of a baseline transactive energy community without periodic energy asset redistribution. Still, the model itself is determined to be a useful tool for further exploration of innovative, automated strategies for DER integration into modern energy market structures and electrical infrastructure in the age of Web3, especially as new science emerges to better explain trigger and feedback mechanisms for carbon exchange through MNs and how mycorrhizae adapt to changes in the environment. This dissertation concludes with a brief discussion of policy implications and an analysis applying the ecological principles of robustness, biodiversity, and altruism to the collective energy future of the human species. / Doctor of Philosophy / Beneath the forest floor, a network of fungi connects trees and plants and allows them to exchange energy and other resources. This dissertation compares this mycorrhizal network (mycorrhiza = fungus + root) to a group of solar-powered buildings generating energy and exchanging it in a local community marketplace (transactive energy markets). In the analogy, the buildings become the plants, the solar panels become the leaves, and the electrical grid represents the mycorrhizal network. Trees and plants produce their own energy through photosynthesis and then send large portions of it down to the roots, where they can trade it or send it to neighbors via the mycorrhizal network. Similarly, transactive energy markets are designed to allow buildings to sell the energy they produce on-site to neighbors, usually at better rates. This helps address a major infrastructure challenge that is arising with more people adding roof-top solar to their homes. The grid that powers our buildings is old now and it was designed to send power from a central power plant out to its edges where most homes and businesses are located. When too many homes produce solar power at the same time, there is nowhere for it to go, and it can easily overload the grid leading to fires, equipment failures, and power outages. Mycorrhizal networks solve this problem in part through local energy balancing driven by cooperative feedback patterns that have evolved over millennia to sustain forest ecosystems.

This work applies scientific findings on the structure and function of mycorrhizal networks (MNs) to energy simulation methods in order to better understand the potential for building bio-inspired energy infrastructure in local communities. Specifically, the mapped structure of a MN of douglas-fir trees in Oregon, USA was adapted into a digital transactive energy market (TEM) model. This adaptation process revealed that a single building can connect to many TEMs simultaneously and that the number of connections can change over time just as symbiotic connections between organisms grow, decay, and adapt to a changing environment. The behavior of MNs in terms of when those connections are added and subtracted informed the functionality of the TEM model, which adds connections when community energy levels are high and subtracts connections when energy levels are low. The resulting 'mycorrhizal' model of the TEM was able to change how much energy each connected household traded on it by changing the number of connections (more connections mean more energy and vice versa). Though the functional performance of the mycorrhizal TEM did not change significantly from that of a typical TEM when they were the context of decentralized computer networks (blockchains) and distributed artificial intelligence. A concluding discussion addresses ways in which elements of this new model could transform energy distribution in communities and improve the resilience of local energy systems in the face of a changing climate.

Identiferoai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/111771
Date08 September 2022
CreatorsGould, Zachary M.
ContributorsMyers-Lawson School of Construction, Reichard, Georg, Day, Susan D., Shealy, Earl Wade, Saad, Walid
PublisherVirginia Tech
Source SetsVirginia Tech Theses and Dissertation
LanguageEnglish
Detected LanguageEnglish
TypeDissertation
FormatETD, application/pdf, application/pdf
RightsIn Copyright, http://rightsstatements.org/vocab/InC/1.0/

Page generated in 0.0029 seconds