This is a report about machine learning in the field of computer science. The problem handled is prediction of energy consumption in district heating systems. Prediction of energy consumption in district heating systems is a delicate problem because of the social behaviours, weather and distribution time that has to be accounted for. One algorithm is introduced and three different experiments are made to determine if the algorithm is useful. The results from the experiments were good. This report differs in approach to the problem then other reports found in this field. The difference is that this report tries to handle social behaviours and looks at a decentralized view of the problem instead of centralized. / Denna rapport är om maskininlärning och hur mna kan använda en maskinlärningsalgoritm för att förutspå konsumption i fjärrvärmenät. Rapporten skiljer sig markant i synsätt jämt emot andra rapporter i ämnet genom att den tittar även på de sociala faktorerna.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:bth-2753 |
Date | January 2002 |
Creators | Svensson, Kenny |
Publisher | Blekinge Tekniska Högskola, Institutionen för programvaruteknik och datavetenskap |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.002 seconds