CD8 T cells are essential for the elimination of intracellular pathogens and tumor cells. Understanding how naïve CD8 T cells differentiate into effector cells capable of eliminating pathogens and to generate adequate memory cells during immune responses is fundamental for optimal T cell vaccine design. In this PhD thesis work we addressed two central questions: 1) What are the mechanisms by which early effector T cells could act as pro-inflammatory effectors? And what is their role in the immune response? 2) How heterogeneous are CD8 responses? Could different pathogens modulate CD8 T cell differentiation programs and be responsible for CD8 cell-to-cell heterogeneity? Could they also generate memory cells with different protection capacities? To address these questions related to the diversity of CD8 T cell differentiation during immune responses, we used the single cell RT-PCR technique to detect ex vivo expression of mRNA in each individual cell, and Brefeldin A injected mice to detect ex vivo intracellular proteins. As experimental system to evaluate in vivo cell activation we used T cell receptor transgenic (TCR-Tg) CD8 T cells. Since the use of TCR-Tg cells to study immune responses has been subjected to criticism (due to high frequency of naïve-precursor transfers), in a first Ms. we compared the behavior of TCR-Tg and endogenous (non-transgenic and present at low frequency) cells in the same mouse. We found fully overlapping behavior between these two cell populations, which reinforced the advantage of using TCR-Tg cells to study CD8 immune responses. In addition, we concluded that the frequency of naïve-precursors do not induce diversity on CD8 T cell differentiation patterns. In a second Ms. we evaluated the impact of different pathogens in the diversity of CD8 T cell properties during two different immune responses: OT1 TCR-Tg cells (specific for OVA antigen) in the response to LM-OVA (Listeria Monocytogenes expressing OVA) infection; and P14 TCR-Tg cells (specific for GP33 epitope) in the response to Lymphocytic choriomeningitis vírus (LCMV) infection. We found that OT1 and P14 cells had different properties. As this difference could also be attributed to the different TCR avidity between OT1 and P14 cells, we then compared the behavior of P14 and OT-1 cells in the same mouse, co-injected with LM-OVA and LM-GP33. Since no differences were then detected, these results demonstrated that priming with different pathogens generates CD8 T cells with different characteristics that are not determined by TCR usage, but rather by the infection context. In addition, when looking for the protection capacity of endogenous CD8 memory cells generated in bacterial or viral context, we found that memory cells generated after LCMV priming were more efficient in responding to a second challenge, than memory cells generated after LM-GP33 priming. We also found that this better protection is associated with a T cell effector memory (TEM) phenotype associated with the LCMV infection, in contrast with a T cell central memory (TCM) phenotype generated after LM-OVA infection. These results demonstrate that different pathogens are responsible for diversity of CD8 T cell differentiation patterns and that even when distinct pathogens are efficiently eliminated during the primary immune response the quality of the memory generated may differ. In a third Ms. we studied the mechanisms by which effector CD8 T cells attracted other cell types in the early days of an immune response. We used two experimental systems: the response of OT1 TCR-Tg cells to LM-OVA infection; and the response of anti-HY TCR-Tg cells to male cells ("sterile"-non infectious context). In both cases we found that immediately after activation, CD8 T cells expressed high levels of pro-inflammatory cytokines and chemokines (such as TNFα, XCL1, CCL3 and CCL4). (...)
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-01059806 |
Date | 23 May 2014 |
Creators | De Campos Pereira Lemos, Sara Sofia |
Publisher | Université René Descartes - Paris V |
Source Sets | CCSD theses-EN-ligne, France |
Language | English |
Detected Language | English |
Type | PhD thesis |
Page generated in 0.0029 seconds