Return to search

On the Convergence Factor in Multilevel Methods for Solving 3D Elasticity Problems

The constant gamma in the strengthened Cauchy-Bunyakowskii-Schwarz inequality is a basic tool for constructing of two-level and multilevel preconditioning matrices. Therefore many authors consider estimates or computations of this quantity. In this paper the bilinear form arising from 3D linear elasticity problems is considered on a polyhedron. The cosine of the abstract angle between multilevel finite element subspaces is computed by a spectral analysis of a general eigenvalue problem. Octasection and bisection approaches are used for refining the triangulations. Tetrahedron, pentahedron and hexahedron meshes are considered. The dependence of the constant $\gamma$ on the Poisson ratio is presented graphically.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa.de:swb:ch1-200601510
Date01 September 2006
CreatorsJung, Michael, Todorov, Todor D.
ContributorsTU Chemnitz, SFB 393
PublisherUniversitätsbibliothek Chemnitz
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageEnglish
Typedoc-type:preprint
Formattext/html, text/plain, image/png, image/gif, text/plain, image/gif, application/pdf, application/x-gzip, text/plain, application/zip
SourcePreprintreihe des Chemnitzer SFB 393, 04-13

Page generated in 0.0026 seconds