In dieser Arbeit wird die ultraschnelle elektronische Polarisation in dem kristallinen Festkörper Lithiumborhydrid (LiBH4) untersucht. Das Material wird dabei mit einem femtosekundenlangen optischen Impuls angeregt und mit einem ebenso kurzen Röntgenimpuls abgetastet. Mithilfe der Röntgenbeugung kann die optisch induzierte räumliche Neuordnung elektronischer Ladung direkt mit atomarer räumlicher Auflösung abgebildet werden. Kupfer K-alpha Röntgenstrahlung für das Experiment wird im Labor aus einer Laser-Plasmaquelle mit 1 kHz Wiederholrate erzeugt. Diese Strahlung wird dann auf eine pulverisierte LiBH4-Probe fokussiert. Die Debye-Scherrer Ringe, die bei Pulverbeugung entstehen, werden mit einem großflächigen Detektor aufgezeichnet und zu Intensitätsprofilen aufbereitet. Mittels Anrege-Abtast-Technik wird die Änderung der Beugungsintensitäten, ausgelöst durch die optische Anregung mit einem optischen Femtosekunden-Impuls, zeitaufgelöst untersucht. Dabei ist die Zeitauflösung durch die Verzögerungzeit zwischen Anrege- und Abtastimpuls gegeben. Daraus ergibt sich ein Einblick in die dynamische elektronische Entwicklung des Systems. Intensitätsänderungen können dann mit Änderungen in der Ladungsdichte des Materials korreliert werden, um strukturelle Dynamik auf der Femtosekunden Zeitskala aufzuklären. Lithiumborhydrid wurde gewählt, weil es Eigenschaften aufweist, die für eine Erforschung der ultraschnellen elektronischen Polarisation notwendig sind. Bisher gibt es keine räumlich aufgelöste Untersuchung im Femtosekunden-Bereich, die zur Erklärung dieses elektronischen Phänomens beträgt. Diese Arbeit präsentiert die ultraschnelle Antwort von LiBH4 auf starke elektrische Felder bei optischen Frequenzen, die zu Ladungsumverteilung und damit einhergehende elektronische Polarisation führt. / In this thesis the ultrafast electronic polarisation in the crystalline material lithium borohydride (LiBH4) is examined. The material is excited by a femtosecond long optical pulse and scanned by a likewise short x-ray pulse. Using x-ray scattering the optically induced spatial rearrangement of electronic charge can be directly mapped with atomic spatical resolution. Copper K-alpha x-rays for the experiment are produced in a laboratory table-top laserplasma source with 1 kHz repetition rate. This radiation is then focused on a powdered sample. Debye-Scherrer rings produced from powder diffraction are collected on a large area detector and processed to yield intensity profiles. Using pump-probe technique the change in diffracted intensity, triggered by excitation with a femtosecond optical pulse is examined. The temporal resolution is given by the delay between pump and probe pulse. This way insight is gained into the dynamic electronic evolution of the system. Intensity changes can be correlated to changes in charge density in the relevant material to elucidate structural dynamics on the femtosecond time scale. Lithium borohydride was chosen since it displays necessary characteristics for the exploration of ultrafast electronic polarisation. Up to date there has been no spatially resolved research in the femtosecond regime elucidating this electronic phenomenon. This work presents the ultrafast resonse in Lithiumborhydrid (LiBH4) to strong electronic fields with optical frequencies, which leads to charge relocation accompanied by electronic polarisation.
Identifer | oai:union.ndltd.org:HUMBOLT/oai:edoc.hu-berlin.de:18452/17499 |
Date | 21 November 2013 |
Creators | Stingl, Johannes |
Contributors | Elsässer, Thomas, Peters, Achim, Bovensiepen, Uwe |
Publisher | Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I |
Source Sets | Humboldt University of Berlin |
Language | German |
Detected Language | English |
Type | doctoralThesis, doc-type:doctoralThesis |
Format | application/pdf |
Rights | Namensnennung - Keine kommerzielle Nutzung, http://creativecommons.org/licenses/by-nc/3.0/de/ |
Page generated in 0.0025 seconds