[pt] Este trabalho tem como objetivo principal estudar o comportamento de flambagem lateral de vigas através de modelos de elementos finitos baseados nas teorias de placas de Kirchhoff e de Mindlin–Reissner. Esses modelos foram combinados com efeitos de membrana, possibilitando a análise de cascas. Foi desenvolvido um código MATLAB para analisar cargas críticas estáticas e dinâmicas, modos de flambagem, frequências e modos de vibração de placas finas e espessas sujeitas a cargas conservativas e cargas não conservativas (também chamadas de seguidoras ou circulatórias). O programa ANSYS foi usado para validação e comparação. Para o cálculo das frequências naturais foram usadas as matrizes de massa e a matriz de rigidez. Para o cálculo da carga crítica estática com carga conservativa, implementa-se a matriz geométrica. Quando há carregamento seguidor não conservativo, é necessário adicionar uma matriz de correção de cargas que é uma matriz assimétrica, achando assim a carga crítica dinâmica, também denominada de flutter. Diferentes condições de contorno e diferentes carregamentos são aplicados em vigas e analisados os casos de flambagem lateral. Valores teóricos encontrados na literatura são comparados com os valores achados usando o método de elementos finitos. A instabilidade lateral de vigas esbeltas tem grande interesse prático, pois em alguns casos pode ocorrer o esgotamento da resistência da peça antes mesmo que seja atingido o estado limite último de flexão. Por isso, o tema flambagem lateral é mencionado em diversas normas nacionais e internacionais, tendo sido feitas algumas comparações com os resultados do programa implementado neste trabalho. / [en] The main objective of this paper is to present results on the lateral buckling of beams using finite elements based on Kirchhoff and Mindlin-Reissner Plate theories, merged with membrane elements in order to include the analysis of shells. A MATLAB code was developed to calculate static and dynamic critical loads, buckling modes, frequencies, and vibration modes of thin and thick plates subjected to conservative and non-conservative (also called follower or circulatory) loads. Mass and stiffness matrices are employed to determine natural frequencies. In the case of conservative loads, static critical loads are calculated by adding a so-called geometric matrix. However, in case of displacement-dependent applied forces, it is necessary to implement a matrix that will correct the loads, designated as load matrix. In the case of conservative forces, the load matrix is symmetric, and in the case of non-conservative forces, it is non-symmetric. In the latter case, the critical load usually will correspond to dynamic behavior designated as flutter. Different boundary conditions and loads are considered and several cases of lateral buckling are investigated. Theoretical values when found in the literature are compared with values determined by Finite Element Method (FEM). The lateral instability of slender beams is very important in practice, because in some situations it may occur prior to ultimate plastic limit state in bending. Therefore, lateral buckling is mentioned in a wide variety of national and international rules, and some comparisons with the results of the computer code developed herein are presented.
Identifer | oai:union.ndltd.org:puc-rio.br/oai:MAXWELL.puc-rio.br:50798 |
Date | 14 December 2020 |
Creators | FELIPE DA SILVA BRANDAO |
Contributors | RAUL ROSAS E SILVA |
Publisher | MAXWELL |
Source Sets | PUC Rio |
Language | Portuguese |
Detected Language | English |
Type | TEXTO |
Page generated in 0.0029 seconds