La protection des mécanismes cryptographiques constitue un enjeu important lors du développement d'un système d'information car ils permettent d'assurer la sécurisation des données traitées. Les supports utilisés étant à la fois logiciels et matériels, les techniques de protection doivent s'adapter aux différents contextes.Dans le cadre d'une cible logicielle, des moyens légaux peuvent être mis en oeuvre afin de limiter l'exploitation ou les usages. Cependant, il est généralement difficile de faire valoir ses droits et de prouver qu'un acte illicite a été commis. Une alternative consiste à utiliser des moyens techniques, comme l'obscurcissement de code, qui permettent de complexifier les stratégies de rétro-conception en modifiant directement les parties à protéger.Concernant les implantations matérielles, on peut faire face à des attaques passives (observation de propriétés physiques) ou actives, ces dernières étant destructives. Il est possible de mettre en place des contre-mesures mathématiques ou matérielles permettant de réduire la fuite d'information pendant l'exécution de l'algorithme, et ainsi protéger le module face à certaines attaques par canaux cachés.Les travaux présentés dans ce mémoire proposent nos contributions sur ces sujets tes travaux. Nous étudions et présentons les implantations logicielle et matérielle réalisées pour le support de courbes elliptiques sous forme quartique de Jacobi étendue. Ensuite, nous discutons des problématiques liées à la génération de courbes utilisables en cryptographie et nous proposons une adaptation à la forme quartique de Jacobi étendue ainsi que son implantation. Dans une seconde partie, nous abordons la notion d'obscurcissement de code source. Nous détaillons les techniques que nous avons implantées afin de compléter un outil existant ainsi que le module de calcul de complexité qui a été développé. / The protection of cryptographic mechanisms is an important challenge while developing a system of information because they allow to ensure the security of processed data. Since both hardware and software supports are used, the protection techniques have to be adapted depending on the context.For a software target, legal means can be used to limit the exploitation or the use. Nevertheless, it is in general difficult to assert the rights of the owner and prove that an unlawful act had occurred. Another alternative consists in using technical means, such as code obfuscation, which make the reverse engineering strategies more complex, modifying directly the parts that need to be protected.Concerning hardware implementations, the attacks can be passive (observation of physical properties) or active (which are destructive). It is possible to implement mathematical or hardware countermeasures in order to reduce the information leakage during the execution of the code, and thus protect the module against some side channel attacks.In this thesis, we present our contributions on theses subjects. We study and present the software and hardware implementations realised for supporting elliptic curves given in Jacobi Quartic form. Then, we discuss issues linked to the generation of curves which can be used in cryptography, and we propose an adaptation to the Jacobi Quartic form and its implementation. In a second part, we address the notion of code obfuscation. We detail the techniques that we have implemented in order to complete an existing tool, and the complexity module which has been developed.
Identifer | oai:union.ndltd.org:theses.fr/2016GREAM029 |
Date | 12 April 2016 |
Creators | Cornelie, Marie-Angela |
Contributors | Grenoble Alpes, Elbaz-Vincent, Philippe |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0022 seconds