Return to search

Etude et conception d'un réseau sur puce dynamiquement adaptable pour la vision embarquée / Dynamically adaptable Network-on-Chip for embedded vision systems

Un équipement portable moderne intègre plusieurs capteurs d'image qui peuvent être de différents types. On peut citer en guise d'exemple un capteur couleur, un capteur infrarouge ou un capteur basse lumière. Cet équipement doit alors supporter différentes sources qui peuvent être hétérogènes en terme de résolution, de granularité de pixels et de fréquence d'émission des images. Cette tendance à multiplier les capteurs, est motivée par des besoins applicatifs dans un but de complémentarité en sensibilité (fusion des images), en position (panoramique) ou en champ de vision. Le système doit par conséquent être capable de supporter des applications de plus en plus complexes et variées, nécessitant d'utiliser une seule ou plusieurs sources d'image. Du fait de cette variété de fonctionnalités embarquées, le système électronique doit pouvoir s'adapter constamment pour garantir des performances en terme de latence et de temps de traitement en fonction des applications, tout en respectant des contraintes d'encombrement.% Même si depuis de nombreuses années, un grand nombre de solutions architecturales ont été proposées pour améliorer l'adaptabilité des unités de calcul, un problème majeur persiste au niveau du réseau d'interconnexion qui n'est pas suffisamment adaptable, en particulier pour le transfert des flux de pixels et l'accès aux données. Nous proposons dans cette thèse un nouveau réseau de communication sur puce (NoC) pour un SoC dédié à la vision. Ce réseau permet de gérer dynamiquement différents types de flux en parallèle en auto-adaptant le chemin de donnée entre les unités de calcul, afin d'exécuter de manière efficace différentes applications. La proposition d'une nouvelle structure de paquets de données, facilite les mécanismes d'adaptation du système grâce à la combinaison d'instructions et de données à traiter dans un même paquet. Nous proposons également un système de mémorisation de trames à adressage indirecte, capable de gérer dynamiquement plusieurs trames image de différentes sources d'image. Cet adressage indirect est réalisé par l'intermédiaire d'une couche d'abstraction matérielle qui se charge de traduire des requêtes de lecture et d'écriture, réalisées suivant des indicateurs de la trame requise (source de l'image, indice temporel et dernière opération effectuée). Afin de valider notre proposition, nous définissons une nouvelle architecture, appelée Multi Data Flow Ring (MDFR) basée sur notre réseau avec une topologie en anneau. Les performances de cette architecture, en temps et en surface, ont été évaluées dans le cadre d'une implémentation sur une cible FPGA / Modern portable vision systems include several types of image sensors such as colour, low-light or infrared sensor. Such system has to support heterogeneous image sources with different spatial resolutions, pixel granularities and working frequencies. This trend to multiply sensors is motivated by needs to complete sensor sensibilities with image fusion processing techniques, or sensor positions in the system. Moreover, portable vision systems implement image applications which require several images sources with a growing computing complexity. To face those challenges in integrating such a variety of functionalities, the embedded electronic computing system has to adapt permanently to preserve application timing performance in latency and processing, and to respect area and low-power constraints. In this thesis, we propose a new Network-On-Chip (NoC) adapted for a System-On-Chip (SoC) dedicated to image applications. This NoC can manage several pixel streams in parallel by adapting dynamically the datapatah between processing elements and memories. The new header packet structure enables adaptation mechanisms in routers by combining instructions and data in a same packet. To manage efficiently the frames storage required for an application, we propose a frame buffer system with an indirect frame addressing, which is able to manage several frames from different sensors. It features a hardware abstraction layer which is in charge to collect reading and writing requests, according to specific frame indicators such as the image source ID. The NoC has been validated in a complete processing architecture called Multi Data Flow Ring (MDFR) with a ring topology. The MDFR performances in time and area has been demonstrated for an FPGA target

Identiferoai:union.ndltd.org:theses.fr/2011PEST1040
Date09 December 2011
CreatorsNgan, Nicolas
ContributorsParis Est, Akil, Mohamed
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0021 seconds