Return to search

High-intensity Ultra-fast Laser Interaction Technologies

To our knowledge this is the first comprehensive study of laser-induced effects generated at intermediate distances using self-channeled femtosecond laser pulses. Studies performed were made both experimentally and theoretically with the use of novel modeling techniques. Peak laser pulse powers above 3 GW allow beam propagation without divergence for up to several kilometers. In this regime, experiments were performed at 30 meters from the laser system in a custom propagation and target range, utilizing the Laser Plasma Laboratory's Terawatt laser system. Experiments included investigations of laser ablation; electromagnetic pulsed (EMP) radiation generation over the 1-18 GHz region; shockwave formation in air and solid media; optical coupling of channeled pulses into transparent media; and, conservation of energy in these interactions. The use of bursts of femtosecond pulses was found to increase the ablation rate significantly over single-pulse ablation in both air and vacuum. EMP generation from near-field focused and distance-propagated pulses was investigated. Field strengths upwards of 400 V/m/[Lambda] for vacuum focusing and 25 V/m/[Lambda] for self-channeled pulses were observed. The total field strengths over 1-18 GHz measured at distance surpassed 12 kV/m. Shockwaves generated in transparent media at 30 meters were observed as a function of time. It was found that the interaction conditions control the formation and propagation of the shock fronts into the medium. Due to the processes involved in self-channeling, significant fractions of the laser pulse were coupled into the target materials, resulting in internal optical and exit-surface damage. Basic estimations on the conservation of energy in the interaction are presented. The results of the experiments are supported by hydrodynamic plasma physics code and acoustic modeling.

Identiferoai:union.ndltd.org:ucf.edu/oai:stars.library.ucf.edu:etd-4084
Date01 January 2007
CreatorsBernath, Robert Thomas
PublisherSTARS
Source SetsUniversity of Central Florida
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceElectronic Theses and Dissertations

Page generated in 0.0019 seconds