Return to search

A análise de risco, segundo o método de Monte Carlo, aplicada à modelagem financeira das empresas

Num mundo onde a competitividade ultrapassa as fronteiras nacionais, onde perturbações políticas e econômicas têm uma repercussão imediata em todo o globo, as empresas precisam cada vez estar preparadas para reagir rapidamente. A dinâmica dos movimentos globais não mais permite que as empresas e organizações possam esperar muito tempo para tomar medidas adaptativas. As respostas devem ser rápidas. O nível de incertezas onde a empresa opera deve ser melhor entendido, de forma que os riscos de uma tomada de decisão inadequada possam ser mitigados. Contudo, melhor que reagir aos fatos é buscar se antecipar aos mesmos. Mas a antecipação requer que os eventos possíveis sejam analisados, não apenas quanto aos seus possíveis impactos, mas também quanto à sua probabilidade de ocorrência. Este trabalho tem como objetivo maior propor um modelo de projeção e análise das demonstrações financeiras das empresas, segundo uma visão não apenas determinística, mas empregando técnicas probabilísticas, que permitam aos gestores das empresas passarem pelo processo de tomada de decisão com um nível de informação que permita a eles terem uma idéia muito clara do nível de risco que envolve as suas decisões. E este modelo torna isto possível ao se utilizar da metodologia de Monte Carlo. Esta metodologia permite que as variáveis críticas de uma empresa sejam tratadas a partir das suas distribuições de probabilidades de ocorrência. Assim, preços de produtos e insumos, variáveis externas tais como a taxa de juros, a taxa câmbio e a taxa da inflação podem ser avaliadas dentro de uma expectativa de ocorrência, como variáveis estocásticas, e não mais como constantes no problema. Com isto, podemos simular os resultados de uma empresa, que serão disponibilizados ao gestor segundo sua distribuição de probabilidade. Este processo permitirá que o gestor possa tomar quaisquer decisões, sejam de investimentos, de política de preços, de endividamento, etc., com um nível de informação muito mais adequado do que quando ele dispõe apenas de informações determinísticas com análise de sensibilidade, visto que esta última nada informa quanto à probabilidade de ocorrência do evento. / In a world where the competitiveness crosses the national borders, where political and economical instabilities have an immediate impact in the whole globe, the companies need to be prepared to give a fast response. The dynamics of the global movements no more allows that the companies and organizations take a long time to implement new alternatives. The answers should be fast. The uncertainties about company environment should be better understood, so the risks of a wrong decision can be mitigated. However, better than to react to the facts, is to anticipate them. The anticipation requests that the possible events must be deeply understood, not just as for their possible impacts, but also for its probability of occurrence. This work has as objective to propose a simulation and analysis financial model of companies, considering probabilistic techniques to allow managers go through decision process with a level of information sufficient enough to permit them to have a clear understanding about the risks involved in their decision. This model turns this possible through the utilization of Monte Carlo’s methodology. This methodology allows the critical variables of a company to be treated as random variables. Prices of products and macroeconomics variables such as interest rate, rate exchange and rate of inflation can be considered as random variables and not as constants in the model. The results of a company will be available to the managers with a statistic treatment and a probabilistic analysis. This process will facilitate the managers decisions process about investments, price policies, loans and others critical subjects to the future of the company with a much more appropriate level of information.

Identiferoai:union.ndltd.org:IBICT/oai:lume56.ufrgs.br:10183/10799
Date January 2006
CreatorsSoares, José Arnaldo Ribeiro
ContributorsPortugal, Marcelo Savino
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguagePortuguese
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis
Formatapplication/pdf
Sourcereponame:Biblioteca Digital de Teses e Dissertações da UFRGS, instname:Universidade Federal do Rio Grande do Sul, instacron:UFRGS
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0024 seconds