EPDM elastomer is widely used as the insulation of low to medium voltage electrical cables used in power plants, for which the life-time prediction has been hampered by the lack of knowledge on structure/mechanical properties, and the nonexistence of pertinent criteria of structural failure. In an attempt to fill this gap, three EPDM matrices filled with 0, 33 and 100 phr of pristine and surface treated ATH were crosslinked by dicumyl peroxide at 170°C and, subsequently, aged thermally at 90,110 and 130°C, and radiochemically under 0.1, 1 and 10 kGy.h-1, in air. A multi-scale approach was employed to analyze the oxidation of EPDM at molecular scale, and to determine its consequences at macromolecular and macroscopic scales by using several complementary characterization techniques: FTIR spectrophotometry, differential calorimetry, rheometry in melt state, swelling test, uniaxial tensile testing, etc. The structure/properties relationships established in this study are capable to explain, in particular, the alteration of elastic and fracture properties of the EPDM matrices due to chain scissions, and the reinforcement of the filler/matrix interphases induced by the specific conditions of oxidation.
Identifer | oai:union.ndltd.org:CCSD/oai:pastel.archives-ouvertes.fr:pastel-00941289 |
Date | 27 May 2013 |
Creators | Shabani, Amin |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | English |
Type | PhD thesis |
Page generated in 0.0022 seconds