Every year, 250,000 people worldwide suffer a spinal cord injury (SCI) that leaves them with chronic paraplegia - permanent loss of ability to move their legs. SCI interrupts axons passing along the spinal cord, thereby isolating motor neurons from brain inputs. To date, there are no effective treatments that can reconnect these interrupted axons. In a recent breakthrough, .NeuroRestore developed the STIMO neuroprosthesis that can restore walking after paralyzing SCI using Epidural Electrical Stimulation (EES) of the lumbar spinal cord. Yet, the calibration of EES requires highly trained personnel and a vast amount of time, and the mechanism by which EES restores movement is not fully understood. In this master thesis, we propose to address this issue using modeling combined with Artificial Neural Networks (ANNs). To do so, we introduce the CyberSpine model to predict EES-induced motor response. The implementation of the model relies on the construction of a multipolar basis of solution of the Poisson equation which is then coupled to an ANN trained against actual data of an implanted STIMO user. Furthermore, we show that our CyberSpine model is particularly well adapted to extract biologically relevant information regarding the efficient connectivity of the patient’s spine. Finally, a user-friendly interactive visualization software is built. / Varje år drabbas 250 000 människor i hela världen av en ryggmärgsskada som ger dem kronisk paraplegi - permanent förlust av förmågan att röra benen. Vid en ryggmärgsskada bryts axonerna som passerar längs ryggmärgen, vilket isolerar de motoriska neuronpoolerna från hjärnans ingångar. Hittills finns det inga effektiva behandlingar som kan återansluta dessa avbrutna axoner. NeuroRestore utvecklade nyligen neuroprotesen STIMO som kan återställa gångförmågan efter förlamande ryggmärgsskada med hjälp av epidural elektrisk stimulering (EES) av ländryggmärgen. Kalibreringen av EES-stimuleringar kräver dock högutbildad personal och mycket tid, och den mekanism genom vilken EES återställer rörelse är inte helt klarlagd. I denna masteruppsats föreslår vi att vi tar itu med denna fråga med hjälp av modellering i kombination med artificiell intelligens. För att göra detta introducerar vi CyberSpine-modellen, en modell som kan förutsäga EES-inducerad motorisk respons. Implementeringen av modellen bygger på konstruktionen av en multipolär bas för lösning av Poisson-ekvationen som sedan kopplas till ett artificiellt neuralt nätverk som tränas mot faktiska data från en implanterad STIMO-deltagare. Dessutom visar vi att vår CyberSpine-modell är särskilt väl anpassad för att extrahera biologiskt relevant information om den effektiva anslutningen av patientens ryggrad. Slutligen bygger vi en användarvänlig interaktiv visualiseringsprogramvara.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-339933 |
Date | January 2023 |
Creators | Qin, Yu |
Publisher | KTH, Skolan för elektroteknik och datavetenskap (EECS) |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | Swedish |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | TRITA-EECS-EX ; 2023:765 |
Page generated in 0.003 seconds