Return to search

Citrato de rodio (II): síntese, caracterização, adsorção em nanopartículas de maguemita e preparação de fluidos magnéticos / Rhodium(II) citrate: synthesis, characterization, adsorption on maghemita nanoparticles, and preparation magnetic fluids

Submitted by Luciana Ferreira (lucgeral@gmail.com) on 2014-08-22T11:23:26Z
No. of bitstreams: 2
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5)
Dissertação_Eloiza da Silva Nunes.pdf: 2557684 bytes, checksum: 485672a5e5df50e25a70cde5803fbfb4 (MD5) / Made available in DSpace on 2014-08-22T11:23:26Z (GMT). No. of bitstreams: 2
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5)
Dissertação_Eloiza da Silva Nunes.pdf: 2557684 bytes, checksum: 485672a5e5df50e25a70cde5803fbfb4 (MD5)
Previous issue date: 2010-03-10 / In this work are described the synthesis and characterization of dinuclear rhodium(II) citrate, adsorption study in maghemite nanoparticles, and preparation of nanoparticles-modified based magnetic fluids. Rhodium(II) citrate has significant antitumor activity being promissory to cancer chemotherapy. Due to the existence of free functional groups in its molecular structure this complex has capacity to functionalize iron oxide nanoparticles to produce drug-particles formulations. The modified nanoparticles show features of biocompatibility suitable to use the system in medical applications. Rhodium(II) citrate was synthesized by an exchange reaction of trifluoroacetate ligands from the precursor rhodium(II) trifluoroacetate by citrate ligands. The products were characterized by C and H elemental and thermogravimetric analysis, mass spectrometry, and infrared, UV/visible and 13C nuclear magnetic resonance spectroscopy. The results are consistent with the formation of dinuclear structure characteristic for rhodium(II) carboxylates. Changing the synthesis conditions were obtained products with stoichiometries [Rh2(H2cit)2(H2O)4] and [Rh2(H2cit)4(H2O)2]. The results and compounds solubility observations suggest that the first one occur as a coordination polymer. The second one showed composition e solubility behavior consistent with the formation of monomeric units. Maghemite nanoparticles with size mean between 5 and 7 nm were obtained through alkaline coprecipitation of Fe2+ and Fe3+ ions with further oxidation with oxygen gas. The solids were characterized by X-ray difratometry and the Scherrer relation was use to calculate the crystallite size mean. Adsorption experimental data were adjusted to Langmuir model and linear coefficients obtained, R2, were greater than 0,99. Functionalized nanoparticles were dispersed into water producing a stable colloid. Dispersion s characterization was performed by absorbance, zeta potential, and hydrodynamic diameter measurements. Surface properties and colloidal behavior of functionalized nanoparticles are much affected by adsorbed species. The colloidal stability of the magnetic fluids is dependent on the adsorbed amounts of rhodium(II) citrate and pH. When the adsorbed amount of rhodium(II) citrate is next to saturation, the magnetic fluids are stable in pH over 3 and show hydrodynamic diameter around 60 nm. Fluids colloidal stability is preserved against physiologic saline solution, PBS buffer, and fetal bovine serum over a period of 30 days. / Neste trabalho estão descritos a síntese e a caracterização do complexo dimérico citrato de ródio(II), estudo de sua adsorção em nanopartículas de maghemita e a preparação de fluidos magnéticos á base de nanopartículas modificadas com o complexo. O citrato de ródio (II) apresenta significante atividade antitumor sendo promissor para aplicação na quimioterapia do câncer. Devido à existência de grupos funcionais livres em sua estrutura molecular esse complexo possui capacidade de funcionalizar nanopartículas de óxidos de ferro para produzir formulações droga-partícula. As nanopartículas modificadas apresentam características de biocompatibilidade adequadas para utilização do sistema em aplicações médicas. O citrato de ródio(II) foi sintetizado via reação de troca de ligantes trifluoroacetato do precursor trifluoroacetato de ródio(II) por citrato. Os produtos foram caracterizados por análise elementar de C e H e termogravimétrica, espectrometria de massas e espectroscopia nas regiões do UV/visível e infravermelho e ressonância magnética nuclear de 13C. Os resultados são consistentes com a formação da estrutura dimérica. Variando-se as condições de síntese pode-se obter produtos com estequiometrias [Rh2(H2cit)2(H2O)4] e [Rh2(H2cit)4(H2O)2]. Os resultados somados às observações sobre a solubilidade dos compostos sugerem que o primeiro ocorre como um polímero de coordenação. O segundo composto apresentou características de composição e solubilidade coerente com a formação de unidades dimetálicas monoméricas. Foram obtidas nanopartículas de maghemita com diâmetros entre 5 e 7 nm através do método de coprecipitação de íons Fe2+ e Fe3+ em meio alcalino com posterior oxidação com oxigênio gasoso. Os sólidos foram caracterizados por difratometria de raios-X e o diâmetro de cristalito calculado pela equação de Scherrer. Os dados experimentais de adsorção de citrato de ródio(II) em maghemita foram ajustados ao modelo de Langmuir sendo obtido coeficiente de regressão linear, R2, maior que 0,99. As nanopartículas funcionalizadas foram dispersas em água obtendo-se um colóide estável. As dispersões foram caracterizadas por medidas de absorvância, potencial zeta e de diâmetro hidrodinâmico. As propriedades de superfície bem como o comportamento coloidal das nanopartículas funcionalizadas são influenciadas pelas espécies adsorvidas. A estabilidade coloidal dos sóis obtidos é dependente das quantidades de citrato de ródio(II) adsorvida e do pH. Quando a quantidade de citrato de ródio adsorvida é próxima da capacidade de adsorção, os fluidos magnéticos obtidos apresentam estáveis em pH acima de 3 com diâmetros hidrodinâmicos próximos de 60 nm. A estabilidade coloidal dos fluidos obtidos é preservada frente a soluções de soro fisiológico, tampão PBS e soro fetal bovino por períodos superiores a 30 dias.

Identiferoai:union.ndltd.org:IBICT/oai:repositorio.bc.ufg.br:tde/2920
Date10 March 2010
CreatorsNunes, Eloiza da Silva
ContributorsSouza, Aparecido Ribeiro de
PublisherUniversidade Federal de Goiás, Programa de Pós-graduação em Química (IQ), UFG, Brasil, Instituto de Química - IQ (RG)
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguagePortuguese
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis
Formatapplication/pdf
Sourcereponame:Biblioteca Digital de Teses e Dissertações da UFG, instname:Universidade Federal de Goiás, instacron:UFG
Rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/, info:eu-repo/semantics/openAccess
Relation663693921325415158, 600, 600, 600, 7826066743741197278, 1571700325303117195, ABRAXIS BIOSCIENCE. Disponível em: <http://www.abraxisbio.com/ products_abraxaneUS.htm>. Acessado em 8 de abril de 2010. ADAMSON, A. W. GAST, A. P. Physical chemistry of surfaces. 6thed., New York: John Wiley & Sons, INC., 1997. ARTEMOV, D.; MORI, N.; OKOLLIE, B.; BHUJWALLA, Z. M. MR molecular imaging of the Her-2/neu receptor in breast cancer cells using targeted iron oxide nanoparticles. Magnetic Resonance in Medicine, v. 49, n°3, p. 403- 408, 2003. BAKANDRITSOS, A.; PSARRAS, G. C.; BOUKOS, N. Some physicochemical aspects of nanoparticulate magnetic iron oxide colloids in neat water and in the presence of poly(vinil alcohol). Langmuir, v. 24, n°20, p.11489-11496, 2008. BATLLE, X.; LABARTA, A. Finite-size effects in fine particles: magnetic and transport properties. Journal of Physics D: Applied Physics, v. 35, p. R15-R42, 2002. BAYER HEALTHCARE. Disponível em: <http://imaging.bayerhealthcare.com/ html/feridex/index.html>. Acessado em 8 de abril de 2010. BAYLOCQ, D.; MAJCHERCZYK;, C.; PELLERIN, F. Action de l’acide citrique sur l’anhydride acetique et la pyridine: determination du mecanisme reactionnel et de la structure du composue forme. Talanta, v. 33, n° 12, p.1035-1038, 1986. BEAR, J. L.; KITCHENS, J.; WILLCOTT, M. R. A kinetic study of the reactions of rhodium(II) acetate with trifluoroacetic acid. Journal of Inorganic Nuclear Chemistry, v. 33, p. 3479-3486, 1971. BEAR, J. L.; HAN, B.; WU, Z.; van CAEMELBECKE, E.; KADISH, K. M. Synthesis, electrochemistry, and spectroscopic characterization of bis-dirhodium complexes linked by axial ligands. Inorganic Chemistry, v. 40, p. 2275-2281, 2001. BELIN, T.; GUIGUE-MILLOT, N.; CAILLOT, T.; AYMES, D.; NIEPCE, J. C. Influence of grain size, oxygen stoichiometry , and synthesis conditions on the g-Fe2O3 vacancies ordering and lattice parameters. Journal of Solid State Chemistry, v. 163, p.459-465, 2002. BELLAMY, L.J.; The Infrared Spectra of Complex Molecules, 3rd ed. Canada: Chapman and Hall, 1975. BERRY, C. C.; WELLS, S.; CHARLES, S.; CURTIS, A. S. G. Dextran and albumin derivatised iron oxide nanoparticles: influence on fibroblasts in vitro. Biomaterials, v. 24, n°25, p. 4551-4557, 2003. BODOR, A.; BÁNYAI, I; TÓTH, I. 1H- and 13C-NMR as tools to study aluminium coordination chemistry – aqueous Al(III) – citrate complexes. Coordination Chemistry Reviews, v. 228, p. 175-186, 2002. BOYAR, E. B.; ROBINSON, S. D. Rhodium(II) Carboxylates. Coordination Chemistry Reviews, v. 50, p. 109-208, 1983. BOYLE, T. J.; PRATT III, H. D.; ALAM, T. M.; RODRIGUEZ, M. A.; CLEM, P. G. Synthesis and characterization of solvated trifluoroacetate alkaline earth derivates. Polyhedron, v. 26, p. 5095-5103, 2007. BRIGGER, I.; DUBERNET, C.; COUVREUR, P. Nanoparticles in cancer therapy and diagnosis. Advanced Drug Delivery Reviews, v. 54, n°5, p. 631-651, 2002. BURGOS, A. E.; BELCHIOR, J. C.; SINISTERRA, R. D. Controlled release of rhodium(II) carboxylates and their association complexes with cyclodextrins from hydroxyapatite matrix. Biomaterials, v, 23, p. 2519-2526, 2002. CAMPOS, A. F. C.; TOURINHO, F. A. da SILVA, G. J.; LARA, M. C. F. L.; DEPEYROT, J. Nanoparticles superficial density of charge in electric Doublelayered magnetic fluid: a conductimetric and potentiometric approach. The European Physical Journal E, v. 6, p.29-35, 2001. CHANTEAU, B.; FRESNAIS, J.; BERRET, J. F. Eletrosteric enhanced stability of functional sub-10 nm cerium and iron oxide particles in cell culture medium. Langmuir, v. 25, n° 16, p.9064-9070, 2009. CHIFOTIDES, H. T.; KOOMEN, J. M.; KANG, M.; TICHY, S. E.; DUNBAR, K. R.; RUSSELL, D. H. Binding of DNA purine sites to dirhodium compounds probed by mass spectrometry. Inorganic Chemistry, v.43, p.6177-6187, 2004. CHIFOTIDES, H. T.; DUMBAR, K. R. Interactions of metal-metal-bonded antitumor active complexes with DNA fragments and DNA. Accounts of Chemical Research, v. 38, p. 146-156, 2005. COELHO, Eliel Pereira. Síntese e caracterização do adipato de ródio(II) e seus produtos de conjugação por ligação peptídica aos ésteres etílicos dos aminoácidos (I)-Leucina e (I)-Fenilalanina. Goiânia, 2002. 86p. Dissertação (Mestrado). Instituto de Química, Universidade Federal de Goiás. CORNELL, R. M.; SCHWERTMANN, U. The iron oxides: structure, properties, reactions, occurrences and uses. Weinheim: WILEY-VCH Verlag GmbH & Co., 2003. COSGROVE, T. Colloid Science: Principles, Methods and Applications.1st ed, Bristol: Blackwell Publishing, 2005. COTTON, F. A.; FELTHOSE, T. R. Molecular and chain structures of four tetrakis(μ-proprionato)-dirhodium(II) complexes with axial nitrogen-donor ligands. Inorganic Chemistry, v. 20, p. 600-608, 1981. COTTON, F. A.; WILKINSON, G.; MURILLO, C. A.; BOCHMANN, M. Advanced inorganic chemistry. 6th ed., New York: John Wiley & Sons, INC., 1999. COTTON, F. A.; LIN, C.; MURILLO, C. A. Controlling the dimensionality of metalmetal bonded Rh24+ polymers by the length of the linker. A disciplined example of crystal engineering. Inorganic Chemistry, v. 40, p. 5886-5889, 2001. CHISTOPH, G. C.; KOH, Y. –B. Metal-metal bonding in dirhodium tetracarboxylates. Trans influence and dependence of the Rh-Rh bond distance upon the nature of the axial ligands. Journal of the American Chemical Society, v.101, n°6, 1979. CULLITY, B. D. Elements of x-ray diffraction. 2nd ed., Massachusetts: Addison- Wesley publishing company inc., 1978. DEACON, G. B.; PHILLIPS R. J. Relationships between the carbon-oxygen stretching frequencies of carboxylato complexes and the type of carboxylate coordination. Coordination Chemistry Reviews, v. 33, p. 227-250, 1980. DENG, Y. F.; JIANG, Y. Q.; HONG., Q. M.; ZHOU, Z. H. Speciation of watersoluble titanium citrate: Synthesis, structural, spectroscopic properties and biological relevance. Polyhedron, v. 26, p. 1561-1569, 2007. DOBSON, J. Magnetic micro- and nano-particle-based targeting for drug gene delivery. Nanomedicine, v.1, n°1, p.31-37, 2006. DREADEN, E. C.; MWAKWARI, S. C.; SODJI Q. H.; OYELERE, A. K.; ELSAYED, M. A. Tamoxifen-poly(ethylene glycol)-thiol gold nanoparticle conjugates: enhanced potency and selective delivery for breast cancer treatment. Bioconjugate Chemistry, v.20, n°12, p.2247-2253, 2009. DUBIKI, L.; MARTIN, R. L. The metal-metal bond in binuclear rhodium(II) acetate monohydrate. Inorganic Chemistry, v. 9, n. 3, p. 673-675, 1970. DUBOIS, E.; CABUIL, V.; BOUÉ, F.; PERZYNSKI, R. Structural analogy between aqueous and oily magnetic fluids. Journal of Chemical Physics, v.111, n°15, 1999. ELVING, P. J.; van ATTA, R. E. Polarografic determination of citric acid. Analytical Chemistry, v. 26, n° 2, p. 295-298, 1954. ERCK, A.; RAINEN, L.; WHIEYMAN, J;. CHANG, I. M.; KIMBALL, A. P.; BEAR, J. Studies of rhodium(II) carboxylates as potential antitumor agents. Proceedings of the Society for Experimental Biology and Medicine, v. 4, p. 1278-1283, 1974. ERCK, A.; SHERWOOD, E.; BEAR, J. L.; KIMBALL, A. P. The metabolism of rhodium(II) acetate in tumor-bearing mice. Cancer Research, v. 36, p.2204- 2209, 1976. EVERETT, D. H. Basic principles of colloid science. Cambridge: Royal Society of Chemistry, 1988. FAUCONNIER, N. BÉE, A. ROGER, J. N. PONS. Synthesis of aqueous magnetic liquids by surface complexation of maghemite nanoparticles. Journal of Molecular Liquids, v. 83, p. 233-242, 1999. FAUCONNIER, N.; BEE, A.; ROGER, J.; PONS, J. N. Adsorption of gluconic and citric acids on maghemita particles in aqueous medium. Progress in Colloid and Polymer Science, v. 100, p.212-216, 1996. FELHOUSE, T. R. The chemistry, structure, and metal-metal bonding in compounds of rhodium(II). Progress in Inorganic Chemistry, v.29, p.73-155, 1982. FENG, S. S. Nanoparticles of biodegradable polymers for new-concept chemotherapy. Expert Review of Medical Devices, v. 1, n° 1, p. 115-125, 2004. FUGITA, T. Structural investigation of the divalent iron and manganese complexes with citric acid by infrared spectroscopy. Chemical & Pharmaceutical Bulletin, v. 30, n. 10, oct 1982. FURLANI, E. P.; NG, K. C. Nanoscale magnetic biotransport with application to magnetofection. Physical Review E, v. 77, n° 6, p.1-8, 2008. GARCELL, L.; MORALES, M. P.; ANDRES-VEGÉS, M.; TARTAJ, P.; SERNA, C. J. Interfacial and rheological characteristics of maghemite aqueous suspensions. Journal of Colloid and Interface Science, v. 205, p. 470-475, 1998. GEPPERT, M.; HOHNHOLT, M.; GAETJEN, L.; GRUNWALD, I.; BÄUMER, M.; DRINGEN R. Accumulation of iron oxide nanoparticles by cultured brain astrocytes. Journal of Biomedical Nanotechnology, v. 5, n° 3, p. 285-293, 2009 GIL, E. S.; GONÇALVES, M. I. A.; FERREIRA, E. I.; ZYNGIER, S. B.; NAJJAR, R. Water soluble cyclophosphamide adducts of rhodium(II) keto-gluconate and glucorate. Synthesis, characterization an in vitro cytostatic assays. Metal- Based Drugs, v. 6, n°. 1, p. 19-24, 1999. GONG, J. L.; WANG, B.; ZENG, G. M.; YANG, C. P.; NIU, C. G.; NIU, Q. Y.; ZHOU, W. J.; LIANG, Y. Removal of cationic dyes from aqueous solution using magnetic multi-wall carbon nanotube nanocomposite as adsorbent. Journal of Hazardous Materials, v. 164, n°2-3, 2009. GNANAPRASKASH, G.; PHILIP, J.; JAYAKUMAR, T.; RAJ, B. Effect of digestion time and alkali addition rate on physical properties of magnetite nanoparticles. Journal of Physical Chemistry B, v. 111, p. 7978-7986, 2007. GRADISHAR, W. J.; TJULANDIN, S. DAVIDSON, N.; SHAW, H.; DESAI, N.; BHAR, P.; HAWKINS, M.; O’SHAUGHNESSY, J. Phase III trial of nanoparticle albumin-bound paclitaxel compared with polyethylated castor oilbased paclitaxel in women with breast cancer. Journal of Clinical Oncology, v. 23, n° 31, 2005. GUO, Y. H.; LI, F. R.; BAO, S. Y.; HAN, T.; CAO, J. J.; ZHOU, H. X. Preparation and characteristics of carboplatin-Fe@C-loaded chitosan nanoparticles with dual physical drug-loaded mechanisms. Current Applied Physics, v. 7, n. 1, p. e97-e102, 2007. GUPTA, K. A.; GUPTA, M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials, v. 26, p. 3995- 4021, 2005. HEFFETER, P.; JUNGWIRTH, U.; JAKUPEC, M.; HARTINGER, C.; GALANSKI, M.; ELBLING, L.; MICKSCHE, M.; KEPPLER, B.; BERGER, W. Resistance against novel anticancer compounds: differences and similarities. Drug Resistance Updates, v. 11, p. 1-16, 2008. HARTINGER, C. G.; ZORBAS-SEIFRIED, S.; JAKUPEC, M. A.; KYNAST, B.; ZORBAS, H.; KEPPLER, B. K. From bench to bedside – preclinical and early clinical development of the anticancer agent indazolium trans- [tetrachlorobis(1H-indazole)ruthenate(III)] (KP1019 or FFC14A). Journal of Inorganic Biochemistry, v. 100, p. 891-904, 2006. HENDERSON, W.; McINDOE, J. S. Mass spectrometry of inorganic, coordination and organometallic compounds. Chichester: John Wiley & Sons Ltd, 2005. HOLLAND, T. J. B.; REDFERN, S. A. T. Unit cell refinement from powder diffraction data: the use of regression diagnostic. Mineralogical Magazine, v. 61, p. 65-77, 1997. HOWARD, R. A.; SHERWOOD, E.; ERCK, A.; KIMBALL, A. P.; BEAR, J. L. Hydrophobicity of several rhodiurn(II) carboxylates correlated with their biologic activity'. Journal of Medicinal Chemistry, v. 20, n° 7, p. 943-946, 1977. HOWARD, R. A.; KIMBALL, A. P.; BEAR, J. L. Mechanism of action of tetra-μ- carboxylatodirhodium(II) in L1210 tumor suspension culture. Cancer Research, v. 39, p. 2568-2573, 1979. HOWELL, J. A. S. Carboxylate lability as a factor in the Rh2(carboxylate)4- catalysed cyclopropenation and cyclopropanation of alkynes and alkenes. Dalton Transactions, v. 34, p. 3798-3803, 2007. HSIAO, J. K.; TAI M. F.; CHU, H. H.; CHEN, S. T.; LI, H.; LAI, D. M.; HSIEH, S. T.; WANG, J. L.; LIU, H. M. Magnetic nanoparticle labeling of mesenchymal stem cells without transfection agent: cellular behavior and capability of detection with clinical 1.5 T magnetic resonance at the single cell level. Magnetic Resonance in Medicine, v. 58, n°4, p.717-724, 2007. HUNTER, R. J. Zeta potential in colloid science: principles and applications. Orlando: Academic Press, 1981. HUNTER, R. J. Foundations of colloid science. Oxford, UK: Clarendon Press, 1986 INVITROGEN. The future of fluorescence: Qdot nanocrystal technology, 2008. Disponível em: <http://www.invitrogen.com/etc/medialib/en/filelibrary/cell_ tissue_analysis/pdfs.Par.86928.File.dat/B_075409_Qdot_brochure.pdf>. Acesso em 8 de abril de 2010. ITO, A.; SHINKAI, M.; HONDA, H.; KOBAYASHI, T. Medical application of functionalized magnetic nanoparticles. Journal of Bioscience and Bioengineering, v. 100, n°1, 2005. JAFELICCI, M.; VARANDA, L. C. O mundo dos colóides. Química Nova na Escola, n°9, p. 9-13, maio 1999. JEFFERY, G.H.; BASSET, J.; MENDHAM, J.; DENNEY, R.C. VOGEL’s Textbook of quantitative chemical analysis, 5th ed., New York: Longman Scientific & Technical, 1989. JOHANNSEN, M.; GNEVECKOW, U.; THIESEN, B.; TAYMOORIAN, K.; CHO, C. H.; WALDÖFNER, N.; SCHOLZ, R.; JORDAN, A.; LOENING, S. A.; WUST, P. Thermotherapy of prostate cancer using magnetic nanoparticles: feasibility, imaging, and three-dimensional temperature distribution. European Urology, v. 52, p. 1653-1662, 2007. JOHNSEN, S.; LOHMANN, K. J. Magnetoreception in animals. Physics Today, v.61, n°3, p.29-35, 2008. JOHNSON, S. A.; HUNT, H. R.; NEUMANN, H. M. Preparation and properties of anhydrous rhodium-(II) acetate and some adducts thereof. Inorganic Chemistry, v.2, issue 5, p. 960-962, 1963. JOLIVET, J. P.; HENRY, M.; LIVAGE. J.; BESCHER, E. Metal oxides chemistry and synthesis: from solution to solid state. New York, John Wiley & Sons, 2000. KALLAY, N.; MATIJEVIC, E. Adsorption at solid/solution interfaces. 1. Interpretation of surface complexation of oxalic and citrate acids with hematite. Langmuir, v. 1, p.195-201, 1985. KANG, Y. S.; RISBUD, S.; RABOLT, J. F. STROEVE, P. Synthesis and characterizations of nanometer-size Fe3O4 and g-Fe2O3 particles. Chemistry of Materials, v. 8, p. 2209-2211, 1996. KATSAROS, N.; ANAGNOSTOPOULOU, A. Rhodium and its compounds as potential agents in cancer treatment. Critical Reviews in Oncology/ Hematology, v. 42, p. 297-238, 2002. KELLAND, L. The resurgence of platinum-based cancer chemotherapy. Nature Reviews Cancer, v. 7, n° 8, p. 573-584, 2007. KETTERING, M.; ZORN, H.; BREMER-STRECK, S.; OEHRING, H.; ZEISBERGER, M.; BERGEMANN, C.; HERGT, R.; HALBHUBER, K. J.; KAISER, W. A.; HILGER, I. Characterization of iron oxide nanoparticles adsorbed with cisplatin for biomedical applications. Physics in Medicine and Biology, v. 54, p. 5109-5121, 2009. KOHLER, N.; SUN, C.; WANG, J.; ZHANG, M. Methotrexate-modified superparamagnetic nanoparticle and their intracellular uptake into human cancer cells. Langmuir, v. 21, p. 8858-8864, 2005. KNOBEL, M. Partículas finas: superparamagnetismo e magnetiresistência gigante. Revista Brasileira de Ensino de Física, v. 22, n. 3, set 2000. LAURENT, S.; FORGE, D.; MARC, P.; ROCH, A.; ROBIC, C.; ELST, L. V.; MULLER, R. N. Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological aspects. Chemistry Reviews, v. 108, p.2064-2110, 2008. LEUSCHNER, C.; KUMAR, C.; HANSEL, W.; SOBOYEJO, W.; ZHOU, J.; HORMES, J. LHRH-conjugated magnetic iron oxide nanoparticles for detection of breast cancer metastases. Breast Cancer Research Treatment, v. 99, n°2, p. 163-176, 2006. LIBUTTI, S. K.; PACIOTTI, G. F.; MYERN L.; HAYNES, R.; GANNON, W. E.; EUGENI, M.; SEIDEL, G.; SHUTACK, Y.; YULDASHEVA, N.; TAMARKIN, L. Preliminary results of a phase I clinical trial of CYT-6091: A PEGylaed colloidal gold-TNF nanomedicine. Journal of Clinical Oncology, ASCO Annual Meeting Proccedings Part I, v. 25, n° 18S, p. 3603, 2007. LYKLEMA, J. Fundamentals of interface and colloid science: solid-liquid interfaces. 2nd ed. London: Academic Press, 1995. v. 2. LU, A. H; SALABAS, E. L.; SCHÜTH, F. Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angewandte Chemie, v. 46, p. 1222-1244, 2007 LUCAS, I. T.; DURAND-VIDAL, S.; DUBOIS, E.; CHEVALET, J.; TURQ, P. Surface charge density of maghemite nanoparticles: role of electrostatics in the proton exchange. Journal of Physical Chemistry C, v.111, p.18568- 18576, 2007. MAIER-HAUFF, K.; ROTHE, R.; SCHOLZ, R.; GNEVECKOW, U.; WUST, P.; THIESEN, B.; FEUSSNER, A.; von DEIMLING, A.; WALDOEFNER, N.; FELIX, R.; JORDAN, A. Intracranial thermotherapy using magnetic nanoparticles combined with external beam radiotherapy: results of a feasibility study on patients with glioblastoma multiforme. Journal of Neurooncology, v. 81, p. 53-60, 2007. MALVERN INSTRUMENTS LTD. Zetasizer nano series user manual. Malvern Instruments, 2005. MAZO, G. Ya., BARANOVSKII, I. B.; SHCHELOKOV, R. N. Study on infraredabsorption spectra of carboxilato-complexes of rhodium(II) with different axial ligands. Russian Journal of Inorganic Chemistry, v. 24, n°12, p. 3330- 3336, 1979. MATIJEVIC, E. Colloid chemical aspects of corrosion of metals. Pure & Applied Chemistry, v.52, p.1179-1193, 1980. McCARTHY, J. R.; WEISSLEDER, R. Multifunctional magnetic nanoparticles for targeted imaging and therapy. Advanced Drug Delivery Review, v.60, n°11, p.1241-1251, 2008. MYERS, D. Surface, interfaces and colloids. 2nd ed. New York: John Wiley & Sons, Inc. 1999. MEJÍAS, R.; et al. Cytokine adsorption/release on uniform magnetic nanoparticles for localizeddrug delivery. Journal of Controlled Release, v.130, p.168–174, 2008. MONTET, X.; WEISSLEDER, R.; JOSEPHSON, L. Imaging pancreatic cancer with a peptide-nanoparticle conjugate targeted to normal pancreas. Bioconjugate Chemistry, v.17, n°4, p. 905-911, 2006. NAJJAR, R.; SANTOS, F. S.; SEIDEL, W. Synthesis and characterization of the Rh(II) citrate complex. Anais da academia brasileira de ciências, v. 59, p. 13, 1987. NAKAMOTO, K. Infrared and raman spectra of inorganic and coordination compounds. 4th edtion, New York: John Wiley & Sons, 1986. NANOSPHERE. Disponível em: <http://www.nanosphere.us/VerigeneSystem_ 4411.aspx>. Acesso em 8 de abril de 2010. NISCHWITZ, V; MICHALKE, B. Electrospray ionization with selected reaction monitoring for the determination of Mn-citrate, Fe-citrate, Cu-citrate and Zncitrate. Rapid Communications in Mass Spectrometry, v. 23, p. 2338-2346, 2009. NORMAN, J. G.; RENZONI, G., E.; CASE, D., A. Electronic structure of Ru2(O2CR)4+ e Rh2(O2CR)4+ complexes. Journal of the American Chemical Society, v.100, n. 18, p. 5256-5267, 1979. NORMAN, J. G.; KOLARI, H. J. Strength and trans influence of Rh-Rh bond in rhodium(II) carboxylates dimmers. Journal of the American Chemical Society, v.100, n° 3, p. 791-799, 1978. NOWICKA, A. M.; KOWALCZYK, A.; DONTEN, M.; KRYSINSKI P.; ZBIGNIEW, S. Influence of a magnetic nanoparticle as a drug carrier of the activity of anticancer druds: Interactions of double stranded DNA and doxorubicin modified with a carrier. Analytical Chemistry, v. 81, p. 7474-7483, 2009. NUFFIELD, E. W. X-Ray diffraction methods. New York: Jorh Wiley & Sons, 1966. ODENBACH, S. Recent progress in magnetic fluid research. Journal of Physics: Condensed Matter, v. 16, p. R1135–R1150, 2004. PACIOTTI, G. F.; MYER, L.; WEINREICH, D.; GOIA, D.; PAVEL, N.; McLAUGHLIN, R. E.; TAMARKIN, L. Colloidal gold: a novel nanoparticle vector for tumor directed drug delivery. Drug Delivery, v. 11, p. 169-183, 2004. PENG, X. H.; QIAN, X.; MAO, H.; WANG, A. Y.; CHEN, Z.; NIE, S.; SHIN, D. M. Targeted magnetic iron oxide nanoparticles for tumor imaging and therapy. International Journal of Nanomedicine, v. 3, n°3, p.311-321, 2008. RADEMAKER-LAKHAI, J. M.; van den BONGARD, D.; PLUIM, D.; BEIJNEN, J. H.; SCHELLENS, J. H. A phase I and pharmacological study with imidazolium-trans-DMSO-imidazole-tetrachlororuthenate, a novel ruthenium anticancer agent. Clinical Cancer Research, v. 10, p. 3717-3727, 2004. RAINEN, L.; HOWARD, R. A.; KIMBALL, A. P; BEAR, J. L. Complexes of rhodium(II) carboxylates with adenosine 5’-mono-,5’-di-, and 5’-triphosfates. Inorganic Chemistry, v. 14, n°.11, p. 2752-2754, 1975. RAO, P. N.; SMITH, M. L.; PATHAK, S.; HOWARD, R. A.; BEAR, J. L. Rhodium(II) butyrate: a potential anticancer drug with cell cycle phase specific effects in HeLa cells. Journal of the National Cancer Institute, v. 64, p.905-912, 1980. REMPEL, G. A.; LEGZDINS, P.; SMITH, H.; WILKINSON, G.; UCKO, D. A. Tetrakis (acetato) dirhodum(II) and similar carboxylato compounds. Inorganic Synthesis, v. 13, p. 90-91, 1972. RIEHEMANN, K.; SCHINEIDER, S. W.; LUGER, T. A.; GODIN, B.; FERRARI, M.; FUCHS, H. Nanomedicine - challenge and perspectives. Angewandte Chemie, v.48, p.872-897, 2009. van RIJT, S.; SADLER, P. J. Current applications and future potential for bioinorganic chemistry in the development of anticancer drugs. Drug Discovery Today, v. 14, n° 23/24, p. 1089-1097, 2009. ROGER, J.; PONS. J. N.; MASSART, R. Behavior of aqueous ferrofluids in presence of aminoacids. European Journal of Solid State and Inorganic Chemistry, v. 26, issue 5, p. 475-488, 1989. ROSENSWEIG, R.E. Ferrohydrodynamics. 1st ed., New York: Dover,1985. SAFFRAN, M.; DENSTEDT, O. F. A rapid method for the determination of citric acid. The Journal of Biological Chemistry, v. 175, p. 849-855, sep 1, 1948. SALAZAR-ALVAREZ, G.; SORT, J.; UHEIDA A.; MUHAMMED, M.; SURIÑACH, S.; BARÓ, M. D.; NOGUÉS J. Reversible post-synthesis tuning of the superparamagnetic blocking temperature of g-Fe2O3 nanoparticles by adsorption and desorption of Co(II) ions. Journal of Materials Chemistry, v.17, p. 322-328, 2006. SHAW, D. J. Introduction to colloid and surface chemistry. 4th ed. London: Butterworth-Heinemann, 1992. SCHILLING, T; KEPPLER, K.B.; HEIM, M.E. NIEBCH, G.; DIETZFELBINGER, H.; RASTETTER J.;HANAUSKE, A.-R. Clinical phase I and pharmacokinetic trial of the new titanium complex budotitane. Investigational New Drugs, v.13, n°4, p.327-332, 1996. SHULTZ, M. D.; BRAXTON, W.; TAYLOR, C.; CARPENTER, E. E. One parameter control of the size of iron oxide nanoparticles synthesized in reverse micelles. Journal of Applied Physics, v. 105, p. 07A522-1 – 07A522-3, 2009. SONVICO, F.; MORNET, S.; VASSEUR, S.; DUBERNET, C.; JAILLARD, D.; DEGROUARD, J.; HOEBEKE, J.; DUGUET, E.; COLOMBO, P.; COUVREUR, P. Folate-conjugated iron oxide nanoparticles for solid tumor targeting as potential specific magnetic hyperthermia mediators: synthesis, physicochemical characterization, and in vitro experiments. Bioconjugate Chemistry. v. 16, p.1181-1188, 2005. SOUZA, Aparecido Ribeiro de. Cicloalcanocarboxilatos de ródio(II). Síntese, estudos espectroscópicos, termoanalíticos e avaliação do potencial antitumor. São Paulo, 1995. 140p. Tese (Doutorado). Instituto de Química, Universidade de São Paulo. SOUZA, A. R.; NAJJAR, R.; MATOS. J. R. Thermal behavior of some rhodium(II) cycloalkanocarboxylate complexes. Termochimica Acta, v. 343, p. 119-125, 2000. SOUZA, A. R. NAJJAR, R.; GLIKMANAS, S. ZYNGIER, S. B. Water-soluble rhodium(II) carboxilate adducts: cytotoxicity of the new compounds. Journal of Inorganic Biochemistry,v. 64, p.1-5, 1996. STEITZ, B.; HOFMANN, H.; KAMAU, S. W.; HASSA, P. O.; HOTTIGER, M. O.; von RECHENBERG, B.; HOFMANN-AMTENBRINK, M.; PETRI-FINK, A. Characterization of PEI-coated superparamagnetic iron oxide nanoparticles for transfection: size distribution, colloidal properties and DNA interaction. Journal of Magnetism and Magneti Materials, v. 311, p. 300-305, 2007. STRENS, R. G. J.; WOOD, B. J. Diffuse reflectance spectra and optical-properties of some iron and titanium-oxides and oxyhydroxides. Mineralogical Magazine, v. 43, n°327, p. 347-354, 1979. STROUSE, J.; LAYTEN, W.; STROUSE, C., E. Structural studies of transition metal complexes of triionized and tetraionized citrate. Models for the coordination of the citrate ion to transition metal ions in solution and at the active site of aconitase. Journal of the American Chemical Society, v. 99, issue 2, p. 562-572, 1977. SUN, Y. K.; MA, M.; ZHANG, Y.; GU, N. Synthesis of nanometer-size maghemita particles from magnetite. Colloids and Surfaces A: Physicochemical and Engineering Aspects, v. 245, n°1-3, p. 15-19, 2004. SUN, S.; ZENG, H.; ROBINSON, D. B.; RAOUX, S.; RICE, P. M.; WANG, S. X.; LI, G. Monodisperse MFe2O4 (M= Fe, Co, Mn) nanoparticles. Journal of the American Chemical Society, v. 126, p.273-279, 2004. TANG, J.; MYERS M.; BOSNICK, K. A.; BRUS, L. E. Magnetite FeO nanocrystals: spectroscopc observation of aqueous oxidation kinetcs. The Journal of Physical Chemistry B, v. 107, n°. 30, p. 7501-7506, 2003. TARTAJ, P. MORALES, M. D. P.; VEITEMILHAS-VERDAGUER, S.; GONZÁLEZCARREÑO, T.; SERNA, C. J. The preparation of magnetic nanoparticle for applicátions in biomedicine. Journal of Physics D: Applied. Physics, v. 36, p. R182-R197, 2003. TAUPITZ, M., WAGNER, S.; SCHONORR, J.; KRAVEC, I.; PILGRIMM, H.; BERGMANN-FRITSCH, H.; HAMM, B. Phase I clinical evaluation of citratecoated monocrystalline very small superparamagnetic iron oxide particles as a new contrast medium for magnetic resonance imaging. Investigative Radiology, v.39, n°7, p.394-405, 2004. THOMPSON, K. H.; ORVIG, C. Boon and bane of metal ions in medicine. Science, v. 300, n ° 5621, p. 936-939, 2003. VARSHAVSKII, Y. S.; CHERKASOVA, T. G.; PODKORYTOV, I. S.; KORLYUKOV, A. A.; KHRUSTALEV, V. N.; NIKOL’SKII, A. B. Rh(I) carbonyl carboxilato complexes: spectral and structural characteristics. Some reactions of coordinated formate group. Russian Journal of Coordination Chemistry, v.31, n°2, p.121-131, 2005. WALDRON, R. D. Infrared spectra of ferrites. Physical Review, v. 99, n° 6, p. 1727-1735, September 15, 1955. WANG, S. H.; SHI, X.; VAN ANTWERP, M.; CAO, Z.; SWANSON, S. D.; BI, X.; BAKER, J. R. Dendrimer-functionalized iron oxide nanoparticles for specific targeting and imaging of cancer cells. Advanced Functional Materials, v.17, n°16, p. 3043-3050, 2007. WELCHER, F. J. Standard methods of chemical analysis. 6th ed. New York: Robert E. Krieger Publishing Company, 1975. v. 2, p. 596-597. WHITE, R. L., NEW, R. M. H.; FABIAN, R. PEASE, W. Patterned media: a viable route to 50 Gbit/in2 and Up for magnetic recording? IEE Transactions on Magnetics, v. 33, n° 1, jan 1997. WILSON, G., R.; TAUBE, H. Acetate complexes of dirhodium and diruthenium aquation and reduction-oxidation. Inorganic Chemistry, v. 14, p. 2276, 1975. XU, C.; SUN, S. Monodisperse magnetic nanoparticle for biomedical applications. Polymer Inernational, v. 56, p.821-826, 2007. Z-MEDICA. Disponivel em: http://www.z-medica.com/quikclot/hemostat_quikclot .asp >. Acesso em 8 de abril de 2010. ZHANG, C. X.; LIPPARD, S. J. New metal complexes as potential therapeutics. Current Opinion in Chemical Biology, v. 7, p. 481-489, 2003. ZHANG, G.; YANG, G.; MA, J. S. Versatile framework solids constructed form divalent transition metal and citric acid: syntheses, crystal structures, and thermal behaviors. Crystal Growth & Design, v. 6, n°2, p.375-381, 2006. ZENG, T.; CHEN, W. W.; CIRTIU, C.; MOORES, A.; SONG, G.; LI, C. J. Fe2O3 nanoparticles: a robust and magnetically recoverable catalyst for threecomponent coupling of aldehyde, alkyne and amine. Green Chemistry, v. 12, p. 570-573, 2010. ZYNGIER, S.; KIMURA, E.; NAJJAR, R. Antitumor effects of rhodium(II) citrate in mice bearing ehrlich tumors. Brazilian Journal of Medical and Biological Research, v. 22, p. 397-401, 1989. ZHOU, Z. H.; HOU, S. Y.; CAO, Z. X.; TSAI, K. R.; CHOW, Y. L. Syntheses, spectroscopies and structures of molybdenum(VI) complexes with homocitrate. Inorganic Chemistry, v. 45, p. 8447-8451, 2006. ZHU, Y.; WU, Q. Synthesis of magnetite nanoparticles by precipitation with forced mixing. Journal of Nanoparticle Research, v. 1, p.393-396,

Page generated in 0.0084 seconds