Return to search

Intégration numérique et calculs de fonctions L

Cette thèse montre la possibilité d'une application rigoureuse de la méthode d'intégration numérique double-exponentielle introduite par Takahasi et Mori en 1974, et sa pertinence pour les calculs à grande précision en théorie des nombres. Elle contient en particulier une étude détaillée de cette méthode, des critères simples sur son champ d'application, et des estimations rigoureuses des termes d'erreur. Des paramètres explicités et précis permettent de l'employer aisément pour le calcul garanti de fonctions définies par des intégrales. Cette méthode est également appliquée en détail au calcul de transformées de Mellin inverses de facteurs gamma intervenant dans les calculs numériques de fonctions L. Par une étude unifiée, ce travail démontre la complexité d'un algorithme de M. Rubinstein et permet de proposer des algorithmes de calcul de valeurs de fonctions L quelconques dont le résultat est garanti et dont la complexité est meilleure en la précision.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00537489
Date18 October 2010
CreatorsMolin, Pascal
PublisherUniversité Sciences et Technologies - Bordeaux I
Source SetsCCSD theses-EN-ligne, France
LanguageFrench
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0015 seconds