Cette thèse s'intéresse à la résolution d'EDP non linéaire sur une variété riemannienne compacte (M,g) de dimension n 3 de la forme : . Ces équations ont une structure variationnelle et on cherche des solutions qui minimisent l'énergie : parmi les fonctions u de W1,2 qui vérifient Cf(u)= . Th. Aubin a montré qu'on a toujours : , où cn est une constante qui ne dépend que de la dimension, et que de plus si l'inégalité est stricte, alors l'équation a des solutions minimisantes. Je montre dans mon travail des théorèmes d'existence dans le cas limite où cette inégalité est une égalité en utilisant une notion de « fonction critique » introduite par E. Hebey et M. Vaugon, et je montre différents résultats concernant ces fonctions critiques.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00007685 |
Date | 04 December 2004 |
Creators | Collion, Stephane |
Publisher | Université Pierre et Marie Curie - Paris VI |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0019 seconds