abstract: There have been multiple attempts of coupling neural networks with external memory components for sequence learning problems. Such architectures have demonstrated success in algorithmic, sequence transduction, question-answering and reinforcement learning tasks. Most notable of these attempts is the Neural Turing Machine (NTM), which is an implementation of the Turing Machine with a neural network controller that interacts with a continuous memory. Although the architecture is Turing complete and hence, universally computational, it has seen limited success with complex real-world tasks.
In this thesis, I introduce an extension of the Neural Turing Machine, the Neural Harvard Machine, that implements a fully differentiable Harvard Machine framework with a feed-forward neural network controller. Unlike the NTM, it has two different memories - a read-only program memory and a read-write data memory. A sufficiently complex task is divided into smaller, simpler sub-tasks and the program memory stores parameters of pre-trained networks trained on these sub-tasks. The controller reads inputs from an input-tape, uses the data memory to store valuable signals and writes correct symbols to an output tape. The output symbols are a function of the outputs of each sub-network and the state of the data memory. Hence, the controller learns to load the weights of the appropriate program network to generate output symbols.
A wide range of experiments demonstrate that the Harvard Machine framework learns faster and performs better than the NTM and RNNs like LSTM, as the complexity of tasks increases. / Dissertation/Thesis / Masters Thesis Computer Science 2020
Identifer | oai:union.ndltd.org:asu.edu/item:57204 |
Date | January 2020 |
Contributors | Bhatt, Manthan Bharat (Author), Ben Amor, Hani (Advisor), Zhang, Yu (Committee member), Yang, Yezhou (Committee member), Arizona State University (Publisher) |
Source Sets | Arizona State University |
Language | English |
Detected Language | English |
Type | Masters Thesis |
Format | 51 pages |
Rights | http://rightsstatements.org/vocab/InC/1.0/ |
Page generated in 0.0022 seconds