Este trabalho tem por objetivo estudar algumas variações do teorema de Banach- Stone. Elas podem ser encontradas no artigo Variations on the Banach- Stone Theorem, [14]. Além disso, apresentamos um resultado, provado por D. Amir em [1], que generaliza a versão clássica do Teorema de Banach- Stone. Consideramos os espaços C(K) e C(L), que representam os espaços de funções contínuas de K em R e de L em R respectivamente, onde K e L são espaços Hausdor compactos. O enunciado da versão clássica do teorema de Banach- Stone é a seguinte: \"Sejam K e L espaços Hausdor compactos. Então C(K) é isométrico a C(L) se e somente se, K e L são homeomorfos\". Apresentamos a primeira das variações que considera isomorfismo entre álgebras e foi feita por Gelfand e Kolmogoro em [15], no ano de 1939. A segunda versão apresentada trata de isomorfismo isométrico e a demonstração é originalmente devida a Arens e Kelley e é encontrada em [2]. Finalmente, estudamos o teorema provado por D. Amir e apresentado em [1]. Este teorema generaliza o teorema clássico de Banach- Stone e tem o seguinte enunciado: Se K e L são espaços Hausdor compactos e T é um isomorfismo linear de C(K) sobre C(L), com ||T||.||T^||< 2 então K e L são homeomorfos / This work aims to study some variations of the Banach- Stone theorem. They can be found in the article Variations on the Banach- Stone Theorem, [14]. In addition, we present a result, proved by D. Amir in [1], that generalizes the classic version of the Theorem Banach- Stone. We consider the spacesC(K) andC(L), representing the spaces of continuous functions from K into R and from L into R respectively, where K and L are compact Hausdor spaces. The wording of the classic version of the Banach- Stone theorem is as follows: \"Let K e L be compact Haudor spaces. Then C(K) isisometrictoC(L) if,andonlyif, K and L are homeomorphic\".Here the first of the variations that considers isomorphism between algebras and was made by Gelfand and Kolmogoro in [15], in 1939. The second version presented is about isometric isomorphisms and the demonstration is originally due to Arens and Kelley and it is found in [2]. Finally, we study the theorem proved by D. Amir and presented in [1]. This theorem generalizes the classical theorem Banach- Stone and states the following: \"Let K e L be compact Haudor spaces and let T be a linear isomorphism from C(K) into C(L), with ||T||.||T^||< 2. Then K and L are homeomorphic\".
Identifer | oai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-03042017-145643 |
Date | 29 July 2016 |
Creators | Janaína Baldan Santos |
Contributors | Daniela Mariz Silva Vieira, Eloi Medina Galego, Cristiane de Andrade Mendes |
Publisher | Universidade de São Paulo, Matemática, USP, BR |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | English |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Source | reponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0018 seconds