The goal of this thesis was the development and application of higher-order spectroscopic techniques. In contrast to ordinary pump–probe (PP) and two-dimensional (2D) spectroscopy, higher-order coherently detected spectroscopic methods measure a polarization that has an order of nonlinearity higher than three. The key idea of the techniques in this thesis is to isolate the higher-order signals from the lower-order signals either by their excitation frequency or by their excitation intensity dependence. Due to the increased number of interactions in higher-order spectroscopy, highly excited states can be probed. For excitonic systems such as aggregates and polymers, the fifth-order signal allows one to directly measure exciton–exciton annihilation (EEA). In polymers and aggregates, the exciton transport is not connected to a change of the absorption and can therefore not be investigated with conventional third-order techniques. In contrast, EEA can be used as a probe to study exciton diffusion in these isonergetic systems. As a part of this thesis, anisotropy in fifth-order 2D spectroscopy was investigated and was used to study geometric properties in polymers.
In 2D spectroscopy, the multi-quantum signals are separated from each other by their spectral position along the excitation axis. This concept can be extended systematically to higher signals. Another approach to isolate multi-quantum signals in PP spectroscopy utilizes the excitation intensity. The PP signal is measured at specific excitation intensities and linear combinations of these measurements result in different signal contributions. However, these signals do not correspond to clean nonlinear signals because the higher-order signals contaminate the lower-order multi-quantum signals. In this thesis, a correction protocol was derived that uses the isolated multiquantum signals, both from 2D spectroscopy and from PP spectroscopy, to remove the contamination of higher-order signals resulting in clean nonlinear signals. Using the correction on the third-order signal allows one to obtain annihilation-free signals at high excitation intensities, i.e., with high signal-to-noise ratio. Isolation and correction in PP and 2D spectroscopy were directly compared by measuring the clean third-order signals of squaraine oligomers at high excitation intensities. Furthermore, higher-order PP spectroscopy was used to isolate up to the 13th nonlinear order of squaraine polymers.
The demonstrated spectroscopic techniques represent general procedures to isolate clean signals in terms of perturbation theory. The technique of higher-order PP spectroscopy needs only small modifications of ordinary PP setups which opens the field of higher-order spectroscopy to the broad scientific community. The technique to obtain clean nonlinear signals allows one to systematically increase the number of interacting (quasi)particles in a system and to characterize their interaction energies and dynamics. / Das Ziel dieser Arbeit war die Entwicklung and Anwendung von spektroskopischen Techniken höherer Ordnung. Im Gegensatz zu herkömmlicher Anrege-Abfrage- und zweidimensionalen (2D) Spektroskopie, wird in kohärenzdetektierten spektroskopischen Methoden höherer Ordnung eine Polarisation gemessen, die höher als drei ist. Die Schlüsselidee der Techniken dieser Arbeit ist die Trennung Signale höherer Ordnung von den Signalen niedrigerer Ordnung, entweder durch ihre Anregungsfrequenz oder durch ihre Abhängigkeit zur Anregungsintensität. Durch die erhöhte Anzahl an Interaktionen in der Spektroskopie höherer Ordnung können auch hoch angeregte Zustände untersucht werden. Für exzitonische Systeme wie Aggregate und Polymere erlaubt das Signal fünfter Ordnung die direkte Messung der Exziton-Exziton-Annihilierung (EEA). In Polymeren und Aggregaten ist der Exziton-Transport nicht mit einer Änderung des Absoprtionsspektrums verbunden und kann daher nicht mit konventionellen Techniken dritter Ordnung untersucht werden. Im Gegensatz dazu kann EEA, die mit Spektroskopie fünfter Ordnung gemessen wird, als Sonde verwendet werden, um Exziton-Diffusion zu untersuchen. Als ein Teil dieser Arbeit wurde die Anisotropie in der 2D-Spektroskopie fünfter Ordnung untersucht, und es wurde gezeigt, dass diese geometrische Eigenschaften von Polymeren bestimmen kann.
In der 2D-Spektroskopie werden die sogenannten Multiquantensignale durch ihre Position entlang der Anregungsachse von anderen Signalen getrennt. Dieses Konzept
kann systematisch zu höheren Signalen erweitert werden, die durch ihre spezifische Anregungsfrequenz in dem 2D-Spektrum isoliert werden. Ein anderer Ansatz, um Multiquantensignale in der Anrege-Abfrage-Spektroskopie zu isolieren, nutzt die Anregungsintensität. Das Anrege-Abfrage-Signal wird bei spezifischen Anregungsintensitäten gemessen und Linearkombinationen dieser Messungen resultieren in verschiedenen Signalbeiträgen. Allerdings entsprechen diese Signale nicht reinen nichtlinearen Signalen, weil die Signale höherer Ordnung die Multiquantensignale niedriger Ordnung kontaminieren. In dieser Arbeit wurde ein Korrekturprotokoll entwickelt, das die isolierten Multiquantensignale sowohl in der 2D- als auch in Anrege-Abfrage-Spektroskopie nutzt, um die Kontamination durch Signale höherer Ordnung zu entfernen. Die Anwendung dieser Korrektur auf das Signal dritter Ordnung erlaubt es, annihilierungsfreie Signale bei hoher Anregungsintensität, d.h. mit hohem Signal-zu-Rausch-Verhältnis zu erhalten. Isolation und Korrektur in Anrege-Abfrage- und 2D-Spektroskopie wurden direkt miteinander verglichen, indem das kontaminierungsfreie Signal dritter Ordnung von Squarain-Oligomeren bei hoher Anregungsintensität gemessen wurde. Des Weiteren wurde Anrege-Abfrage-Spektroskopie höherer Ordnung eingesetzt, um nichtlineare Signale bis zur 13ten Ordnung in Squarain-Polymeren zu isolieren.
Die gezeigten spektroskopischen Techniken stellen allgemeine Verfahren zur Isolierung verschiedener Signale im Sinne der Störungstheorie dar. Die Technik der Anrege-Abfrage-Spektroskopie höherer Ordnung erfordert nur geringfügige Änderungen an gewöhnlichen Anrege-Abfrage-Experimenten und erlaubt es, die Spektroskopie höherer Ordnung in vielen weiteren wissenschaftlichen Gebieten anzuwenden. Der Ansatz kontaminierungsfreier nichtlinearer Signale gibt die Möglichkeit, die Anzahl der wechselwirkenden Teilchen systematisch zu erhöhen und ihre Wechselwirkungsenergien und Dynamiken zu messen.
Identifer | oai:union.ndltd.org:uni-wuerzburg.de/oai:opus.bibliothek.uni-wuerzburg.de:29318 |
Date | January 2023 |
Creators | Lüttig, Julian Konstantin |
Source Sets | University of Würzburg |
Language | English |
Detected Language | German |
Type | doctoralthesis, doc-type:doctoralThesis |
Format | application/pdf |
Rights | https://opus.bibliothek.uni-wuerzburg.de/doku/lic_mit_pod.php, info:eu-repo/semantics/openAccess |
Page generated in 0.0032 seconds