Return to search

Oscillatory pipe flow of wormlike micellar solutions

Wormlike micelles are viscoelastic fluids that present an intermediate behavior between solids and ordinary liquids since they are elastic at short time scales but flow easily at large time scales. In opposition to Newtonian fluids, which have constant viscosity, these fluids usually exhibit a non-Newtonian response with a rate-dependent shear viscosity.
Wall-bounded oscillatory flows of Newtonian and complex fluids are found in many practical situations. Oscillatory pipe flows are especially important in physiology in connection with the circulatory and respiratory systems of human beings, as well as in industrial processes such as fluid pumping, secondary oil recovery or filtration, and in acoustics. Pulsating flows are of particular interest also in the rheological characterization of complex fluids.
We analyze the laminar oscillatory flow of viscoelastic fluids using the Maxwell and Oldroyd-B models. We have shown that in wall-bounded oscillatory flows of viscoelastic fluids the two characteristic lengths of the Ferry waves, the damping length and wavelength, together with the characteristic separation of the walls, define all the flow properties for fluid models with a linear shear-stress equation in unidirectional flow. In wall-bounded settings there exists the possibility that shear waves generated at different locations superpose themselves before decaying so that the shear waves interfere, giving rise to a resonant flow at well defined frequencies of driving. The theoretical predictions obtained for the laminar velocity profiles are validated by carrying out time-resolved Particle Image Velocimetry (PIV) experiments in a vertical pipe at small driving amplitudes.
The oscillatory pipe flow has been investigated in the whole range of experimentally accessible driving frequencies and amplitudes, and classified in three main flow regimes: laminar, vortical, and non-axisymmetric vortical. By ramping up and down the driving amplitude at constant frequency we have been able to characterize the transition from laminar to more complex flows, under controlled driving conditions. The first hydrodynamic instability occurs when the laminar base flow becomes unstable against the formation of axisymmetric toroidal vortices that appear distributed along the cylinder. The calculation of root-mean-square fluctuations in the vertical direction, of the vertical and radial components of the velocity (averaged in time or over the tube diameter) has allowed to determine the critical amplitude at which the instability sets in with high accuracy. In the vortical flow an abrupt increase of the fluctuations is observed, that accounts for the loss of the vertical translational symmetry and the formation of vortices in the flow. This transition exhibits hysteresis when the driving amplitude is ramped up and down, which makes us presume that the bifurcation from the laminar flow has a subcritical nature. A second hydrodynamic instability occurs when the vortical flow loses the axial symmetry. In this flow regime the vortices are heavily distorted and no longer axisymmetric.
The velocity and vorticity maps of the vortical flow measured in a meridional plane of the tube appear periodic in time, on time scales comparable to the driving period. Interestingly, the vortex formation is favored in the acceleration phases of the piston oscillation. Besides, we have uncovered a spatio-temporal dynamics on long time scales (much larger than the relaxation time of the fluid) that substantially modifies the flow organization. This slow dynamics is more effective in the bottom half of the cylinder, specially next to the driving piston. A global inspection of the vortical flow along the tube length reveals that the instability takes place earlier in the bottom part of the tube, in the vicinity of the driving piston. At increasing the driving amplitude the boundary between laminar and vortical flow progressively raises towards the top regions. And above a critical driving amplitude the entire fluid flow is vortical. The mechanism triggering the hydrodynamic instability from the laminar to the axisymmetric vortical flow is not yet clear. / L'objectiu d'aquesta Tesi és estudiar el flux oscil•latori vertical en fluids micel•lars.
Els fluids micel•lars són fluids complexos amb propietats viscoelàstiques, de manera que mostren un comportament intermedi entre els sòlids i els líquids: són elàstics a escales de temps curtes però flueixen a escales de temps més llargues. En contraposició als fluids Newtonians, que tenen una viscositat constant, els fluids complexos mostren un comportament no-Newtonià, amb una viscositat que depèn del ritme de deformació.
El fluxos oscil•latoris de fluids Newtonians o complexos en geometries confinades són especialment importants en fisiologia, en relació amb el sistema circulatori i respiratori d'éssers humans, i també en processos industrials com el bombejat de fluids, l'extracció de petroli, i en particular són interessants en la caracterització reològica de fluids complexos.
Primer estudiem el flux oscil•latori des d'una perspectiva teòrica i analitzem el flux laminar de fluids viscoelàstics utilitzant els models de Maxwell i Oldroyd-B en un tub vertical. Hem mostrat que en fluxos confinats existeix la possibilitat que les ones de cisalla generades a les diferents parets se sobreposin abans d'esmorteir-se i que eventualment donin lloc a un fenomen de ressonància. Les prediccions teòriques obtingudes pel flux laminar són validades duent a terme experiments de Velocimetria d'Imatges de Partícules (PIV) en un tub vertical, per amplituds petites del forçament oscil•latori. Quan s'incrementa l'amplitud de l'oscil•lació el flux laminar evoluciona cap a fluxos que presenten una dependència espai-temporal més complexa.
Fent rampes d'amplitud creixent a una freqüència fixada hem pogut caracteritzar experimentalment la transició del flux laminar a aquests fluxos més complexos, sota condicions de forçament ben controlades. La primera inestabilitat apareix quan el flux laminar esdevé inestable amb la corresponent formació d'anells de vorticitat apilats al llarg del tub. Es manifesta una segona inestabilitat per amplituds del forçament més grans, per la qual el flux vortical perd la simetria axial. En aquest nou règim els vòrtex estan fortament distorsionats i no són axisimètrics. Fent rampes d’amplitud creixent i decreixent hem observat que aquestes dues transicions presenten histèresi, i que per tant són de caràcter subcrític.

Identiferoai:union.ndltd.org:TDX_UB/oai:www.tdx.cat:10803/108992
Date22 March 2013
CreatorsCasanellas Vilageliu, Laura
ContributorsOrtín, Jordi, 1959-, Universitat de Barcelona. Departament d'Estructura i Constituents de la Matèria
PublisherUniversitat de Barcelona
Source SetsUniversitat de Barcelona
LanguageEnglish
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/doctoralThesis, info:eu-repo/semantics/publishedVersion
Format188 p., application/pdf
SourceTDX (Tesis Doctorals en Xarxa)
Rightsinfo:eu-repo/semantics/openAccess, L'accés als continguts d'aquesta tesi queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons: http://creativecommons.org/licenses/by-nc/3.0/es/

Page generated in 0.133 seconds