Return to search

Pour l'identification de modèles factoriels de séries temporelles: Application aux ARMA stationnaires

Cette thèse est axée sur le problème de l'identification de modèles factoriels de séries temporelles et est à la rencontre des deux domaines de la Statistique, l'analyse des séries temporelles et l'analyse des données avec ses méthodes descriptives. La première étape de notre travail a pour but d'étendre à plusieurs séries temporelles discrètes, l'étude des composantes principales de Jenkins développée dans les années 70. Notre approche adapte l'analyse en composantes principales "classique" (ou ACP) aux séries temporelles en s'inspirant de la technique Singular Spectrum Analysis (ou SSA). Un principe est déduit et est appliqué au processus multidimensionnel générateur des séries. Une matrice de covariance à structure "remarquable" est construite autour de vecteurs al9;atoires décalés: elle exploite la chronologie, la stationnarité et la double dimension du processus. A l'aide de deux corollaires établis par Friedman B. dans les années 50 basés sur le produit tensoriel de matrices, et de propriétés de covariance des processus circulaires, nous approchons les éléments propres de la matrice de covariance. La forme générale des composantes principales de plusieurs séries temporelles est déduite. Dans le cas des processus "indépendants", une propriété des scores est établie et les composantes principales sont des moyennes mobiles des séries temporelles. A partir des résultats obtenus, une méthodologie est présentée permettant de construire des modèles factoriels de référence sur des ARMA vectoriels "indépendants". L'objectif est alors de projeter une nouvelle série dans un des modèles graphiques pour son identification et une première estimation de ses paramètres. Le travail s'effectue dans un cadre théorique, puis dans un cadre expérimental en simulant des échantillons de trajectoires AR(1) et MA(1) stationnaires, "indépendantes" et à coefficients symétriques. Plusieurs ACP, construites sur la matrice temporelle issue de la simulation, produisent de bonnes qualités de représentation des processus qui se regroupent ou s'opposent selon leur type en préservant la propriété des scores et la symétrie dans le comportement des valeurs propres. Mais, ces modèles factoriels reflètent avant tout la variabilité des bruits de la simulation. Directement basées sur les autocorrélations, de nouvelles ACP donnent de meilleurs résultats quels que soient les échantillons. Un premier modèle factoriel de référence est retenu pour des séries à forts coefficients. La description et la mesure d'éventuels changements structurels conduisent à introduire des oscillateurs, des fréquences et des mesures entropiques. C'est l'approche structurelle. Pour établir une possible non-linéarité entre les nombreux critères et pour augmenter la discrimination entre les séries, une analyse des correspondances multiples suivie d'une classification est élaborée sur les entropies et produit un deuxième modèle de référence avec trois classes de processus dont celle des processus à faibles coefficients. Ce travail permet également d'en déduire une méthode d'analyse de séries temporelles qui combine à la fois, l'approche par les autocorrélations et l'approche par les entropies, avec une visualisation par des méthodes factorielles. La méthode est appliquée à des trajectoires AR(2) et MA(2) simulées et fournit deux autres modèles factoriels de référence.

Identiferoai:union.ndltd.org:CCSD/oai:pastel.archives-ouvertes.fr:pastel-00001966
Date10 1900
CreatorsToque, Carole
PublisherTélécom ParisTech
Source SetsCCSD theses-EN-ligne, France
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0023 seconds