Return to search

Optimisation convexe non-différentiable et méthodes de décomposition en recherche opérationnelle / Convex nonsmooth optimization and decomposition methods in operations research

Les méthodes de décomposition sont une application du concept de diviser pour régner en optimisation. L'idée est de décomposer un problème d'optimisation donné en une séquence de sous-problèmes plus faciles à résoudre. Bien que ces méthodes soient les meilleures pour un grand nombre de problèmes de recherche opérationnelle, leur application à des problèmes réels de grande taille présente encore de nombreux défis. Cette thèse propose des améliorations méthodologiques et algorithmiques de méthodes de décomposition. Notre approche est basée sur l'analyse convexe et l'optimisation non-différentiable. Dans la décomposition par les contraintes (ou relaxation lagrangienne) du problème de planification de production électrique, même les sous-problèmes sont trop difficiles pour être résolus exactement. Mais des solutions approchées résultent en des prix instables et chahutés. Nous présentons un moyen simple d'améliorer la structure des prix en pénalisant leurs oscillations, en utilisant en particulier une régularisation par variation totale. La consistance de notre approche est illustrée sur des problèmes d'EDF. Nous considérons ensuite la décomposition par les variables (ou de Benders) qui peut avoir une convergence excessivement lente. Avec un point de vue d'optimisation non-différentiable, nous nous concentrons sur l'instabilité de l'algorithme de plans sécants sous-jacent à la méthode. Nous proposons une stabilisation quadratique de l'algorithme de Benders, inspirée par les méthodes de faisceaux en optimisation convexe. L'accélération résultant de cette stabilisation est illustrée sur des problèmes de conception de réseau et de localisation de plates-formes de correspondance (hubs). Nous nous intéressons aussi plus généralement aux problèmes d'optimisation convexe non-différentiable dont l'objectif est coûteux à évaluer. C'est en particulier une situation courante dans les procédures de décomposition. Nous montrons qu'il existe souvent des informations supplémentaires sur le problème, faciles à obtenir mais avec une précision inconnue, qui ne sont pas utilisées dans les algorithmes. Nous proposons un moyen d'incorporer ces informations incontrôlées dans des méthodes classiques d'optimisation convexe non-différentiable. Cette approche est appliquée avec succès à desproblèmes d'optimisation stochastique. Finalement, nous introduisons une stratégie de décomposition pour un problème de réaffectation de machines. Cette décomposition mène à une nouvelle variante de problèmes de conditionnement vectoriel (vectorbin packing) où les boîtes sont de taille variable. Nous proposons des heuristiques efficaces pour ce problème, qui améliorent les résultats de l'état de l'art du conditionnement vectoriel. Une adaptation de ces heuristiques permet de construire des solutions réalisables au problème de réaffectation de machines de Google. / Decomposition methods are an application of the divide and conquer principle to large-scale optimization. Their idea is to decompose a given optimization problem into a sequence of easier subproblems. Although successful for many applications, these methods still present challenges. In this thesis, we propose methodological and algorithmic improvements of decomposition methods and illustrate them on several operations research problems. Our approach heavily relies on convex analysis and nonsmooth optimization. In constraint decomposition (or Lagrangian relaxation) applied to short-term electricity generation management, even the subproblems are too difficult to solve exactly. When solved approximately though, the obtained prices show an unstable noisy behaviour. We present a simple way to improve the structure of the prices by penalizing their noisy behaviour, in particular using a total variation regularization. We illustrate the consistency of our regularization on real-life problems from EDF. We then consider variable decomposition (or Benders decomposition), that can have a very slow convergence. With a nonsmooth optimization point of view on this method, we address the instability of Benders cutting-planes algorithm. We present an algorithmic stabilization inspired by bundle methods for convex optimization. The acceleration provided by this stabilization is illustrated on network design andhub location problems. We also study more general convex nonsmooth problems whose objective function is expensive to evaluate. This situation typically arises in decomposition methods. We show that it often exists extra information about the problem, cheap but with unknown accuracy, that is not used by the algorithms. We propose a way to incorporate this coarseinformation into classical nonsmooth optimization algorithms and apply it successfully to two-stage stochastic problems.Finally, we introduce a decomposition strategy for the machine reassignment problem. This decomposition leads to a new variant of vector bin packing problems, where the bins have variable sizes. We propose fast and efficient heuristics for this problem that improve on state of the art results of vector bin packing problems. An adaptation of these heuristics is also able to generate feasible solutions for Google instances of the machine reassignment problem.

Identiferoai:union.ndltd.org:theses.fr/2014GRENM099
Date04 November 2014
CreatorsZaourar, Sofia
ContributorsGrenoble, Brogliato, Bernard, Malick, Jérôme
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0028 seconds