<p>This thesis presents techniques for improving building HVAC system performance in existing buildings generated using simulation-based tools and real data. Therefore, one of the aims has been to research the needs and possibilities to assess and improve building HVAC system performance. In addition, this thesis aims at an advanced utilization of building energy management system (BEMS) and the provision of useful information to building operators using simulation tools.</p><p>Buildings are becoming more complex systems with many elements, while BEMS provide many data about the building systems. There are, however, many faults and issues in building performance, but there are legislative and cost-benefit forces induced by energy savings. Therefore, both BEMS and the computer-based tools have to be utilized more efficiently to improve building performance.</p><p>The thesis consists of four main parts that can be read separately. The first part explains the term commissioning and the commissioning tool work principal based on literature reviews. The second part presents practical experiences and issues introduced through the work on this study. The third part deals with the computer-based tools application in design and operation. This part is divided into two chapters. The first deals with improvement in the design, and the second deals with the improvement in the control strategies. The last part of the thesis gives several rules for fault diagnosis developed using simulation tools. In addition, this part aims at the practical explanation of the faults in the building HVAC systems.</p><p>The practical background for the thesis was obtained though two surveys. The first survey was carried out with the aim to find the commissioning targets in Norwegian building facilities. In that way, an overview of the most typical buildings, HVAC equipment, and their related problems was obtained. An on-site survey was carried out on an example building, which was beneficial for introducing the building maintenance structure and the real hydronic heating system faults.</p><p>Coupled simulation and optimization programs (EnergyPlus and GenOpt) were utilized for improving the building performances. These tools were used for improving the design and the control strategies in the HVAC systems. Buildings with a hydronic heating system were analyzed for the purpose of improving the design. Since there are issues in using the optimization tool, GenOpt, a few procedures for different practical problems have been suggested. The optimization results show that the choice of the optimization functions influences significantly the design parameters for the hydronic heating system.</p><p>Since building construction and equipment characteristics are changing over time, there is a need to find new control strategies which can meet the actual building demand. This problem has been also elaborated on by using EnergyPlus and GenOpt. The control strategies in two different HVAC systems were analyzed, including the hydronic heating system and the ventilation system with the recovery wheel. The developed approach for the strategy optimization includes: involving the optimization variables and the objective function and developing information flow for handling the optimization process.</p><p>The real data obtained from BEMS and the additional measurements have been utilized to explain faults in the hydronic heating system. To couple real data and the simple heat balance model, the procedure for the model calibration by use of an optimization algorithm has been developed. Using this model, three operating faults in the hydronic heating system have been elaborated.</p><p>Using the simulation tools EnergyPlus and TRNSYS, several fault detection and diagnosis (FDD) rules have been generated. The FDD rules were established in three steps: testing different faults, calculating the performance indices (PI), and classifying the observed PIs. These rules have been established for the air cooling system and the hydronic heating system. The rules can diagnose the control and the component faults. Finally, analyzing the causes and the effects of the tested faults, useful information for the building maintenance has been descriptively explained.</p><p>The most important conclusions are related to a practical connection of the real data and simulation-based tools. For a complete understanding of system faults, it is necessary to provide real-life information. Even though BEMS provides many building data, it was proven that BEMS is not completely utilized. Therefore, the control strategies can always be improved and tuned to the actual building demands using the simulation and optimization tools. It was proven that many different FDD rules for HVAC systems can be generated using the simulation tools. Therefore, these FDD rules can be used as manual instructions for the building operators or as a framework for the automated FDD algorithms.</p> / <p>Denne avhandlingen presenterer noen fremgangsmåter for forbedring av ytelser for VVS-tekniske anlegg i eksisterende bygninger basert på bruk av simuleringsverktøy og virkelige måledata. Ett av målene har vært å undersøke behov og muligheter for vurdering og forbedring av ytelser for VVS-anlegg i bygninger. I tillegg har denne avhandlingen hatt som mål å fremme bruk av SD-anlegg samt å fremskaffe nyttig informasjon til driftspersonalet.</p><p>Bygninger blir stadig mer kompliserte systemer som inneholder flere og flere komponenter mens SD-anlegg håndterer en stadig større mengde data fra bygningsinstallasjoner. På den ene siden registreres det ofte feil og problemer med hensyn til ytelsene til de VVS-tekniske installasjonene. På den andre siden innføres det stadig strengere lovmessige pålegg og kost-nyttekrav motivert i energieffektiviseringen. SD-anlegg og databaserte verktøy bør derfor brukes mer effektivt for forbedring av ytelsene.</p><p>Avhandlingen består av fire hoveddeler hvor hver del kan leses separat. Den første delen, som er basert på literatturstudie, forklarer funksjonskontroll som begrep og prinsipper for oppbygging av verktøy for funksjonskontroll. Den andre delen presenterer praktisk erfaring og problemstillinger utviklet og behandlet i løpet av arbeidet med avhandlingen. Den tredje delen handler om anvendelse av databaserte verktøy for forbedring av ytelsen for VVS-tekniske installasjoner. Den tredje delen er delt opp i to kapitler, hvorav et handler om forbedring av systemløsninger og et om forbedring av styringsstrategier. Den siste delen presenterer flere regler for feilsøking og diagnostisering utviklet gjennom bruk av simuleringsverktøy. I tillegg gir denne delen en praktisk forklaring av feilene i de VVS-anleggene som er behandlet i undersøkelsen.</p><p>Det praktiske grunnlaget for avhandlingen er etablert gjennom to undersøkelser. Den første var en spørreundersøkelse som hadde til hensikt å kartlegge målsetninger for funksjonskontroll i norske bygninger. Gjennom dette ble det etablert en oversikt over de mest typiske bygninger med tilhørende VVS-anlegg og de mest forekommende problemene. En dypere undersøkelse ble utført på ett casebygg. Denne undersøkelsen viste seg å være nyttig både for kartlegging av betydningen av organisering av driften av bygningen og for avdekking av de virkelige feilene i det vannbårne oppvarmingssystemet.</p><p>En kobling mellom et simulerings- og et optimaliseringsprogram (EnergyPlus og GenOpt) har vært benyttet for forbedring av ytelsene for de VVS-tekniske installasjonene. Disse verktøyene har vært brukt for forbedring av både systemløsningene og styringsstrategiene for VVS-anlegg. Bygninger med vannbåren oppvarmingssystem har vært analysert for å forbedre systemløsningen. På grunn av begrensninger i bruken av optimaliseringsverktøyet GenOpt, har det blitt utviklet egne prosedyrer for håndtering av visse typer problemstillinger hvor denne begrensningen opptrer. Resultatene for optimaliseringen viser at valg av objektfunksjoner påvirker betydelig parametrene i det vannbårne oppvarmingssystemet.</p><p>Endringer i egenskapene til både bygningskonstruksjoner og utstyr som skjer på grunn av aldring over tiden, gjør det nødvendig med tilpassning av styringsstrategier slik at det virkelige behovet kan bli dekket. Denne problemstillingen har vært analysert ved bruk av EnergyPlus og GenOpt. Styringsstrategiene for to forskjellige VVS-anlegg, et vannbåret oppvarmingssystem og et ventilasjonsanlegg med varmegjenvinner har blitt behandlet. Den utviklete prosedyren for optimalisering av styringsstrategien består av følgende steg: innføring av optimaliseringsvariabler og objektfunksjon, samt utvikling av informasjonsflyt for behandling av optimaliseringsprosessen.</p><p>De virkelige data, både fra SD-anlegg og tilleggsmålinger, har vært benyttet for praktisk forklaring av feilene i oppvarmingssystemet. En prosedyre for modellkalibrering basert på bruk av en optimaliseringsalgoritme som kobler sammen de virkelige data og en enkel varmebalansemodell har blitt foreslått. Tre konkrete driftsfeil i oppvarmingssystemet har blitt belyst gjennom bruk av denne varmebalansemodellen.</p><p>Flere regler for feilsøking og diagnostisering har blitt utviklet ved hjelp av simuleringsverktøyene EnergyPlus and TRNSYS. Denne utviklingen har bestått av tre ulike steg: testing av bestemte feil, beregning av ytelsesindikatorer og til slutt klassifisering av de observerte ytelsesindikatorer. Reglene har blitt utviklet for et system av aggregater for luftkjøling og for et vannbåret oppvarmingssystem. Reglene kan diagnostisere både styringsfeil og komponentfeil. Til slutt presenteres informasjon som er nyttig for drift av VVS-tekniske installasjoner i bygninger basert på en analyse av årsakene for og virkningene av de feil som er behandlet.</p><p>De viktigste konklusjonene er knyttet til praktisk kombinasjon av virkelige måleverdier og simuleringsverktøy. Informasjon fra det virkelig liv er helt nødvendig for å få en god forståelse av feil som oppstår i anlegg. Det er også vist at potensialet som ligger i alle de data som er tilgjengelige gjennom SD-anlegg, ikke er fullt utnyttet. Gjennom bruk av simuleringsverktøy kan styringsstrategiene alltid bli bedre tilpasset og innjustert til de virkelige behov i bygningen. Simuleringsverktøy kan også brukes for utvikling av prosedyrer for feilsøking og diagnostisering i VVS-tekniske anlegg. Disse prosedyrene kan brukes enten som en veileder for manuell feilsøking og detektering eller som grunnlag for utvikling av automatiserte algoritmer.</p> / Paper II, VI and VII are reprinted with kind permission from Elsevier, sciencedirect.com
Identifer | oai:union.ndltd.org:UPSALLA/oai:DiVA.org:ntnu-2215 |
Date | January 2008 |
Creators | Djuric, Natasa |
Publisher | Norwegian University of Science and Technology, Faculty of Engineering Science and Technology, Fakultet for ingeniørvitenskap og teknologi |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | Norwegian |
Type | Doctoral thesis, monograph, text |
Relation | Doctoral Theses at NTNU, 1503-8181 ; 1503-8181 |
Page generated in 0.0083 seconds