Made available in DSpace on 2015-03-03T15:28:31Z (GMT). No. of bitstreams: 1
Sebastiao Gomes de Andrade Neto_DISSERT.pdf: 2828925 bytes, checksum: 9a3a8727e20a5d6e18788b92eb274fd3 (MD5)
Previous issue date: 2010-03-31 / In Percolation Theory, functions like the probability that a given site belongs to the infinite cluster, average size of clusters, etc. are described through power laws and critical exponents. This dissertation uses a method called Finite Size Scaling to provide a estimative of those exponents. The dissertation is divided in four parts. The first one briefly presents the main results for Site
Percolation Theory for d = 2 dimension. Besides, some important quantities for the determination of the critical exponents and for the phase transistions understanding are defined. The second shows an introduction to the fractal concept, dimension and classification. Concluded the base of our study, in the third part the Scale Theory is mentioned, wich relates critical exponents and the quantities described in Chapter 2. In the last part, through the Finite Size Scaling method, we determine the critical exponents fi and. Based on them, we used the previous Chapter scale relations in order to determine the remaining critical exponents / Na Teoria de Percola??o, fun??es como a probabilidade de um s?tio pertencer ao aglomerado percolante, tamanho m?dio dos aglomerados, etc. s?o descritas por meio de leis de pot?ncia e expoentes
cr?ticos. Esta disserta??o faz uso do m?todo chamado Escalonamento de Tamanho Finito para
fornecer uma estimativa desses expoentes. A disserta??o est? dividida em quatro partes. A primeira apresenta de forma r?pida os principais
resultados da Teoria da Percola??o por s?tios para dimens?o d = 2. Al?m disso, s?o definidas algumas
quantidades importantes para a determina??o dos expoentes cr?ticos e o para o entendimento sobre as transi??es de fase. A segunda parte apresenta uma introdu??o sobre o conceito de fractal, dimens?o e
classifica??o. Conclu?da a base do nosso estudo, na terceira parte ? mensionada a Teoria de Escala, a
qual relaciona os expoentes cr?ticos e as quantidades descritas no Cap?tulo 2. Na ?ltima parte, atrav?s do escalonamento de tamanho finito, determinamos os expoentes cr?ticos? ? e v. A partir desses,
usamos as rela??es de escala as rela??es descritas no Cap?tulo anterior para determinar os expoentes cr?ticos restantes
Identifer | oai:union.ndltd.org:IBICT/oai:repositorio.ufrn.br:123456789/18634 |
Date | 31 March 2010 |
Creators | Andrade Neto, Sebastiao Gomes de |
Contributors | CPF:70399689400, http://lattes.cnpq.br/8115277730238592, Bielschowsky, Roberto Hugo, CPF:23810270768, http://lattes.cnpq.br/2481613790501364, Soares, Roosewelt Fonseca, CPF:10598880410, http://lattes.cnpq.br/0827259395754404, Morais, Edemerson Solano Batista de, CPF:83717536400, http://lattes.cnpq.br/0594792275724616, Pereira, Marcelo Gomes |
Publisher | Universidade Federal do Rio Grande do Norte, Programa de P?s-Gradua??o em Matem?tica Aplicada e Estat?stica, UFRN, BR, Probabilidade e Estat?stica; Modelagem Matem?tica |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | English |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Format | application/pdf |
Source | reponame:Repositório Institucional da UFRN, instname:Universidade Federal do Rio Grande do Norte, instacron:UFRN |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0073 seconds