Return to search

INTEGRATING ELECTRIC ROADWAYS INTO THE ELECTRIC POWER SYSTEM: A MULTI-SCALE SPATIOTEMPORAL EVALUATION

<p dir="ltr">Electric roadways (ERs) represent a new paradigm for electrified transportation that is</p><p dir="ltr">enabled by the emerging dynamic (in-motion) wireless power transfer technology. Large-scale</p><p dir="ltr">integration of DWPT systems into power grids can pose a problem due to its high-power</p><p dir="ltr">requirements, significant number of power electronic converters and spatial concentration.</p><p dir="ltr">Despite their potential magnitude, the operational impacts of DWPT on the power grid have</p><p dir="ltr">not been fully studied in the literature. This dissertation contributes to our understanding</p><p dir="ltr">of how ERs could be successfully integrated with the electric power system at a diverse range</p><p dir="ltr">of spatial and temporal levels.</p><p dir="ltr">On a macroscopic level, a framework for assessing the financial viability of ERs is proposed.</p><p dir="ltr">Annual ER load estimations from traffic flow models of electric vehicles are used to</p><p dir="ltr">generate energy forecasts and carry out a financial evaluation. These models are also used to</p><p dir="ltr">plan distribution system capacity expansion. On a mesoscopic level, a data-driven design of</p><p dir="ltr">ERs and their interconnection with the distribution grid is presented. A data-based stochastic</p><p dir="ltr">traffic flow model is developed and used for designing the interconnection of the DWPT</p><p dir="ltr">system with the distribution grid ensuring adequate power transmission to high penetration</p><p dir="ltr">levels of heavy-duty trucks. The model is also used for conducting a series of quasi-steady</p><p dir="ltr">state studies on the power distribution system. On a microscopic level, a methodology for</p><p dir="ltr">modeling ER systems for time-domain simulations is proposed. Dynamic component models</p><p dir="ltr">are developed for the DWPT system. Power electronics are modeled using average-value</p><p dir="ltr">representations and integrated with models of the distribution grid. The models are used for</p><p dir="ltr">time-domain system simulations, transient analysis, fault analysis and power quality studies.</p><p dir="ltr">Theoretical analysis as well as numerical case studies and simulations of the proposed</p><p dir="ltr">methodologies are presented.</p>

  1. 10.25394/pgs.24872346.v1
Identiferoai:union.ndltd.org:purdue.edu/oai:figshare.com:article/24872346
Date20 December 2023
CreatorsDiala Anwar Eid Haddad (17677794)
Source SetsPurdue University
Detected LanguageEnglish
TypeText, Thesis
RightsCC BY 4.0
Relationhttps://figshare.com/articles/thesis/INTEGRATING_ELECTRIC_ROADWAYS_INTO_THE_ELECTRIC_POWER_SYSTEM_A_MULTI-SCALE_SPATIOTEMPORAL_EVALUATION/24872346

Page generated in 0.0023 seconds