En 1984 Jones découvrit son invariant polynomial, qui ne ressemblait à aucun concept connu auparavant. En quelques années cette découverte a provoqué l'invention de nombreux autres invariants polynomiaux et des invariants dits quantiques ou de type fini, issus des représentations du groupe des tresses et souvent inspirés par des analogies avec la physique théorique. Malgré leurs mérites pour la théorie des nœuds et des 3-variétés, ces invariants restent peu compris du coté de la topologie algébrique, et parfois de la topologie tout court. Ce mémoire présente et discute quelques éléments de réponse.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00348433 |
Date | 14 December 2007 |
Creators | Eisermann, Michael |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | habilitation ࠤiriger des recherches |
Page generated in 0.0018 seconds