Return to search

Analyse mathématique des modèles cinétiques en présence d'un champ magnétique intense / Mathematical analysis of kinetic models with strong magnetic field

Cette thèse propose une analyse mathématique des modèles cinétiques en présence d'un champ magnétique intense.L'objectif de ce projet est le développement d'outils mathématiques nécessaires à la modélisation des plasmas de fusion. Les phénomènes physiques rencontrés dans les plasmas de fusion mettent en jeu des échelles caractéristiques disparates. L'interaction entre ces ordres de grandeurs est un enjeu important et requiert une analyse multi-échelle. Il s'agit d'un problème d'homogénéisation par rapport au mouvement rapide de rotation des particules autour des lignes de champ magnétique. Nous étudions le régime du rayon de Larmor fini pour le système de Vlasov-Poisson, dans le cadre de champs magnétiques uniformes, en appliquant les méthodes de gyro-moyenne. Nous donnons l'expression explicite du champ d'advection effectif de l'équation de Vlasov, dans laquelle nous avons substitué le champ électrique auto-cohérent, via la résolution de l'équation de Poisson moyennée à l'échelle cyclotronique. Nous mettons en évidence la structure hamiltonienne du modèle limite et présentons ses propriétés : conservations de la masse, de l'énergie cinétique, de l'énergie électrique, etc.Nous généralisons ensuite cette étude dans le cadre de champs magnétiques non uniformes. Comme précédemment, les principales propriétés des modèles limites sont mises en évidence : conservations de la masse, de l'énergie, structure hamiltonienne.Nous prenons en compte également les effets collisionnels, en présence d'un champ magnétique intense. Après identification des équilibres et invariants du noyau de collision moyenné, on s'intéresse à la dérivation de modèles fluides. / This thesis proposes a mathematical analysis of kinetic models in the presence of strong magnetic fields.The objective of this project is the development of mathematical tools required for modelisation of fusion plasmas. The physical phenomena encountered in fusion plasmas involve disparate characteristic scales. The interaction between these orders of magnitude is an important issue and requires a multi-scale analysis. We appeal to homogenization techniques with respect to the fast rotation motion around the magnetic field lines.We study the finite Larmor radius regime for the Vlasov-Poisson system, in the framework of uniform magnetic fields, by appealing to gyro-average methods. We indicate the explicit expression of the effective advection field entering the Vlasov equation, after substituting the self-consistent electric field, obtained by the resolution of the averaged (with respect to the cyclotronic time scale) Poisson equation. We emphasize the hamiltonian structure of the limit model and present its properties : conservation of mass, of kinetic energy, of electric energy, etc.Then we generalize this study to general magnetic shapes. As before, the main properties of the limit model are emphasized : mass and energy balances, hamiltonian structure.We also take into account the collisional effects, under strong magnetic fields. After identifying the equilibria and the invariants of the average collision operator, we inquire about fluid models.

Identiferoai:union.ndltd.org:theses.fr/2017AIXM0021
Date26 January 2017
CreatorsFinot, Aurélie
ContributorsAix-Marseille, Bostan, Mihaï, Hauray, Maxime
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0016 seconds