Return to search

Universality and Individuality in Recurrent Networks extended to Biologically inspired networks

Activities in the motor cortex are found to be dynamical in nature. Modeling these activities and comparing them with neural recordings helps in understanding the underlying mechanism for the generation of these activities. For this purpose, Recurrent Neural networks or RNNs, have emerged as an appropriate tool. A clear understanding of how the design choices associated with these networks affect the learned dynamics and internal representation still remains elusive. A previous work exploring the dynamical properties of discrete time RNN architectures (LSTM, UGRNN, GRU, and Vanilla) such as the fixed point topology and the linearised dynamics remains invariant when trained on 3 bit Flip- Flop task. In contrast, they show that these networks have unique representational geometry. The goal for this work is to understand if these observations also hold for networks that are more biologically realistic in terms of neural activity. Therefore, we chose to analyze rate networks that have continuous dynamics and biologically realistic connectivity constraints and on spiking neural networks, where the neurons communicate via discrete spikes as observed in the brain. We reproduce the aforementioned study for discrete architectures and then show that the fixed point topology and linearized dynamics remain invariant for the rate networks but the methods are insufficient for finding the fixed points of spiking networks. The representational geometry for the rate networks and spiking networks are found to be different from the discrete architectures but very similar to each other. Although, a small subset of discrete architectures (LSTM) are observed to be close in representation to the rate networks. We show that although these different network architectures with varying degrees of biological realism have individual internal representations, the underlying dynamics while performing the task are universal. We also observe that some discrete networks have close representational similarities with rate networks along with the dynamics. Hence, these discrete networks can be good candidates for reproducing and examining the dynamics of rate networks. / Aktiviteter i motorisk cortex visar sig vara dynamiska till sin natur. Att modellera dessa aktiviteter och jämföra dem med neurala inspelningar hjälper till att förstå den underliggande mekanismen för generering av dessa aktiviteter. För detta ändamål har återkommande neurala nätverk eller RNN uppstått som ett lämpligt verktyg. En tydlig förståelse för hur designvalen associerade med dessa nätverk påverkar den inlärda dynamiken och den interna representationen är fortfarande svårfångad. Ett tidigare arbete som utforskar de dynamiska egenskaperna hos diskreta RNN- arkitekturer (LSTM, UGRNN, GRU och Vanilla), såsom fastpunkts topologi och linjäriserad dynamik, förblir oförändrad när de tränas på 3-bitars Flip- Flop-uppgift. Däremot visar de att dessa nätverk har unik representationsgeometri. Målet för detta arbete är att förstå om dessa observationer också gäller för nätverk som är mer biologiskt realistiska när det gäller neural aktivitet. Därför valde vi att analysera hastighetsnätverk som har kontinuerlig dynamik och biologiskt realistiska anslutningsbegränsningar och på spikande neurala nätverk, där neuronerna kommunicerar via diskreta spikar som observerats i hjärnan. Vi reproducerar den ovannämnda studien för diskreta arkitekturer och visar sedan att fastpunkts topologi och linjäriserad dynamik förblir oförändrad för hastighetsnätverken men metoderna är otillräckliga för att hitta de fasta punkterna för spiknätverk. Representationsgeometrin för hastighetsnätverk och spiknätverk har visat sig skilja sig från de diskreta arkitekturerna men liknar varandra. Även om en liten delmängd av diskreta arkitekturer (LSTM) observeras vara nära i förhållande till hastighetsnäten. Vi visar att även om dessa olika nätverksarkitekturer med varierande grad av biologisk realism har individuella interna representationer, är den underliggande dynamiken under uppgiften universell. Vi observerar också att vissa diskreta nätverk har nära representationslikheter med hastighetsnätverk tillsammans med dynamiken. Följaktligen kan dessa diskreta nätverk vara bra kandidater för att reproducera och undersöka dynamiken i hastighetsnät.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-294208
Date January 2020
CreatorsJoshi, Nishant
PublisherKTH, Skolan för elektroteknik och datavetenskap (EECS)
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageSwedish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationTRITA-EECS-EX ; 2020:941

Page generated in 0.0039 seconds