Return to search

Experimentation and physical layer modeling for opportunistic large array-based networks

The objective of this dissertation is to better understand the impact of the range extension and interference effects of opportunistic large arrays (OLAs), in the context of cooperative routing in multi-hop ad hoc networks. OLAs are a type of concurrent cooperative transmission (CCT), in which the number and location of nodes that will participate in a particular CCT cannot be known a priori. The motivation of this research is that the previous CCT research simplifies or neglects significant issues that impact the CCT-based network performance. Therefore, to develop and design more efficient and realistic OLA-based protocols, we clarify and examine through experimentation and analysis the simplified or neglected characteristics of CCT, which should be considered in the network-level system design. The main contributions of this research are (i) intra-flow interference analysis and throughput optimization in both disk- and strip-shaped networks, for multi-packet OLA transmission, (ii) CCT link modeling focusing on path-loss disparity and link asymmetry, (iii) demonstration of CCT range-extension and OLA-based routing using a software-defined radio (SDR) test-bed, (iv) a new OLA-based routing protocol with practical error control algorithm. In the throughput optimization in presence of the intra-channel interference, we analyze the feasibility condition of spatially pipelined OLA transmissions using the same channel and present numerical results with various system parameters. In the CCT link model, we provide the impact of path-loss disparity that are inherent in a virtual multiple-input-single-output (VMISO) link and propose an approximate model to calculate outage rates in high signal-to-noise-ratio (SNR) regime. Moreover, we present why link asymmetry is relatively more severe in CCT compared to single-input-single-output (SISO) links. The experimental studies show actual measurement values of the CCT range extension and realistic performance evaluation of OLA-based routing. Lastly, OLA with primary route set-up (OLA-PRISE) is proposed with a practical route recovery technique.

Identiferoai:union.ndltd.org:GATECH/oai:smartech.gatech.edu:1853/51798
Date22 May 2014
CreatorsJung, Haejoon
ContributorsWeitnauer, Mary Ann
PublisherGeorgia Institute of Technology
Source SetsGeorgia Tech Electronic Thesis and Dissertation Archive
Languageen_US
Detected LanguageEnglish
TypeDissertation
Formatapplication/pdf

Page generated in 0.0025 seconds