Le schéma Marker-And-Cell (MAC) est un schéma de discrétisation des équations aux dérivées partielles sur maillages cartésiens, très connu en mécanique des fluides. Nous nous intéressons ici à son analyse mathématique dans le cadre des écoulements incompressibles sur des maillages cartésiens non-uniformes en dimension 2 ou 3. Dans un premier temps nous discrétisons les équations de Navier-Stokes pour un écoulement incompressible stationnaire; nous établissons des estimations a priori sur les suites de vitesses et pressions approchées qui permettent d’une part d'établir l’existence d’une solution au schéma, et d’obtenir la compacité de ces suites lorsque le pas d’espace tend vers 0. Nous montrons alors la convergence de ces suites (à une sous-suite près) vers une solution faible du problème continu, ce qui nécessite une analyse fine du terme de convection non linéaire. Nous nous intéressons ensuite aux équations de Navier-Stokes en régime instationnaire avec une discrétisation en temps implicite. Nous démontrons que le schéma préserve les propriétés de stabilité du problème continu et obtenons ainsi l’existence d’une solution au schéma. Puis, grâce à des techniques de compacité et en passant à la limite dans le schéma, nous démontrons qu’une suite de vitesses approchées converge. Si l’on se restreint au problème de Stokes, et en supposant de plus que la condition initiale de la vitesse est dans H 1 , nous obtenons une estimation sur la pression qui permet de montrer la convergence forte des pressions approchées. Enfin nous étendons l’analyse aux écoulements incompressibles à masse volumique variable. On montre la convergence du schéma. / The Marker-And-Cell (MAC) scheme is a discretization scheme for partial derivative equations on Cartesian meshes, which is very well known in fluid mechanics. Here we are concerned with its mathematical analysis in the case of incompressible flows on two or three dimensional non-uniform Cartesian grids. We first discretize the steady-state incompressible Navier-Stokes equations. We show somea priori estimates that allow to show the existence of a solution to the scheme and some compactness and consistency results. By a passage to the limit on the scheme, we show that the approximate solutions obtained with the MAC scheme converge (up to a subsequence) to a weak solution of the Navier-Stokes equations, thanks to a careful analysis of the nonlinear convection term. Then, we analyze the convergence of the unsteady-case Navier-Stokes equations. The algorithm is implicit in time. We first show that the scheme preserves the stability properties of the continuous problem, which yields, the existence of a solution. Then, invoking compactness arguments and passing to the limit in the scheme, we prove that any sequence of solutions (obtained with a sequence of discretizations the space and time step of which tend to zero) converges up to the extraction of a subsequence to a weak solution of the continuous problem. If we restrict ourselves to the Stokes equations and assume that the initial velocity belongs to H 1, then we obtain estimates on the pressure and prove the convergence of the sequences of approximate pressures. Finally, we extend the analysis of the scheme to incompressible variable density flows. we show the convergence of the scheme.
Identifer | oai:union.ndltd.org:theses.fr/2015AIXM4777 |
Date | 14 December 2015 |
Creators | Mallem, Khadidja |
Contributors | Aix-Marseille, Herbin, Raphaèle |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English, French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0018 seconds