Les trois chapitres, relativement indépendants, de la thèse étudient des variétés pseudo-riemanniennes (variétés munies d'une métrique non-dégénérée mais non définie) dont l'holonomie restreinte est indécomposable mais stabilise des sous-espaces totalement isotropes. Chapitre 1. Une variété riemanienne de courbure de Ricci parallèle est localement (globalement si elle est complète et simplement connexe) un produit de variétés d'Einstein. Cela résulte de la positivité de la métrique et n'est plus vrai dans le cas pseudo-riemannien. Cependant, en utilisant les propriétés classiques de l'holonomie ainsi qu'un travail de Klingenberg de 1954 sur les paires de formes bilinéaires symétriques le chapitre 1 montre un résultat proche : décomposition en produit de variétés d'Einstein et de deux autres types, <> et < pour les paires de formes réflexives, voir pp.96-100 de la thèse. Chapitre 3. Le plus significatif, il construit, sur une certaine classe de variétés pseudo-riemanniennes réductibles, indécomposables sous l'action de leur holonomie restreinte, des coordonnées privilégiées, <> en un sens qu'il précise (th. 1 p. 167). Ces coordonnées sont un outil pour une première compréhension de la géométrie locale, complexe, de ces variétés. Elles permettent en particulier de paramétrer l'espace des germes de métriques lorentziennes correspondant à chacun des quatre types d'holonomie lorentzienne possibles donnés par A. Ikemakhen et L. Bérard Bergery. (voir pp. 204--205 et 211).
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00008842 |
Date | 03 May 2000 |
Creators | Boubel, Charles |
Publisher | Université Henri Poincaré - Nancy I |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0018 seconds