Thèse ou mémoire avec insertion d'articles / L'ataxie de Friedreich (FRDA), une maladie neurodégénérative autosomique récessive, est l'ataxie héréditaire la plus fréquente dans le monde. Elle touche principalement les individus de race caucasienne, et sa prévalence est très variable entre les régions allant de 1/20 000 à 1/50 000. Cette pathologie est causée majoritairement par une insertion d'une série de répétition GAA (GAAr) dans le premier intron du gène de la frataxine (FXN) conduisant à une diminution de l'expression de cette protéine. Selon plusieurs auteurs, la délétion des GAAr par la technologie CRISPR/Cas9 permet d'améliorer la synthèse de la frataxine. Notre hypothèse est qu'il est possible de livrer les composants de la technologie CRISPR/Cas9 dans un seul AAV pour induire une délétion des GAAr afin de restaurer une transcription normale de la frataxine. Cependant, les virus adéno-associés (AAV) utilisés pour la livraison des composants du système CRISPR dans l'organisme font face à certains défis : une limite d'encapsidation (4,7 kb) et une expression constitutive de la nucléase qui peut entraîner des effets délétères. Mon premier article, vise à démontrer que pour supprimer la répétition GAA dans les cellules in vivo, il est possible d'utiliser certains composants de la technologie CRISPR/Cas9 suffisamment petits pour être incorporés dans un seul AAV. Ce traitement devrait restaurer une transcription normale et augmenter ainsi l'expression de la frataxine. La Cas9 dérivé de Campylabacter jejuni (CjCas9) est la plus petite Cas9 identifiée jusqu'à ce jour et peut permettre aux composants du système CRISPR d'être inclus dans un seul AAV. Ainsi, un AAV9 codant pour la protéine CjCas9 et deux ARNgs a été administré par voie intrapéritonéale à deux modèles de souris YG8sR (250 à 300 GAA) et YG8-800 (800 GAA) à l'âge de 10 - 11 jours. Quatre semaines après le traitement, les plus fortes concentrations de virus ont été détectées dans le foie et dans le cœur. Le taux de délétion des GAA était de 4,7 % et 2,4 % dans le cœur, 17,5 % et 14,5 % dans le foie pour les souris YG8sR et YG8-800 respectivement. L'ARNm de la frataxine n'a augmenté significativement que dans le foie des souris YG8-800, organe dans lequel une édition de 14,5 % avait été détectée. Au regard des taux d'édition observés, il nous a semblé nécessaire de proposer et tester une approche pour améliorer l'efficacité du système CRISPR. Ainsi, dans mon deuxième article, les inhibiteurs du protéasome ont été utilisés pour augmenter la stabilité de la protéine CjCas9. De ce fait, une analyse par western blot a révélé que le traitement des cellules avec le MG132 ou le bortézomib, 2 inhibiteurs du protéasome, augmentait significativement les niveaux de protéine CjCas9 dans les cellules HEK293T et HeLa. De plus, la quantification par ddPCR a montré que le traitement avec le bortézomib améliorait l'efficacité de la CjCas9 et augmentait le taux de correction du gène de FXN dans les cellules HEK293T. Finalement, les mutations hors cibles et la réaction immunitaire induite par la nucléase constituent un défi majeur pour le système CRISPR/Cas9. Dans mon troisième article, une approche par induction dénommée CRISPR-SCReT (CRISPR-Stop Codon Read Through) a été explorée pour réduire le temps d'expression de la CjCas9 afin de diminuer la réponse immune contre cette protéine et réduire les mutations hors cible (off-targets mutations). Pour valider ce système, des cellules HEK293T ont été co-transfectées avec un plasmide codant pour la CjCas9/2ARNgs, dans lequel le gène de la CjCas9 a été muté pour introduire un codon-stop prématuré (Premature Terminal Codon, PTC). Les cellules ont été traitées avec différentes doses de généticine (G418) pendant 48 h. Le western blot a confirmé que l'expression de la protéine Cas9, qui a été a réprimée par la mutation PTC, peut être induite par la G418. La délétion des GAAr a été détectée par PCR uniquement dans les cellules traitées avec la G418. L'approche a également été utilisée avec succès avec la SpCas9, une Cas9 provenant de Steptococcus pyogenes. L'ensemble de ces résultats montrent qu'il est possible d'enlever le GAAr dans certains organes avec la technologie CRISPR livrée par un seul AAV. La stabilisation temporaire de la CjCas9 a permis in vitro une augmentation du taux d'édition. La méthode CRISPR-SCReT a permis de contrôler l'expression de la Cas9 tout en permettant une édition génomique appréciable in vitro. Nos travaux contribuent à ouvrir une avenue pour le traitement de l'ataxie de Freidreich par la délétion des GAAr. / Friedreich's ataxia (FRDA), an autosomal recessive neurodegenerative disease, is the most common hereditary ataxia. It mainly affects individuals of the Caucasian race, and its prevalence is highly variable between regions ranging from 1/20,000 to 1/50,000 individual. This pathology is caused by an insertion of a series of GAA repeat (GAAr) in the first intron of the frataxin gene (FXN) leading to a decrease in the expression of this protein. According to several authors, the deletion of GAAr by CRISPR/Cas9 technology improves the expression of frataxin. Our hypothesis is that it is possible to deliver CRISPR/Cas9 technology components with a single AAV to induce deletion of GAAr to restore normal transcription of frataxin. However, the adeno-associated viruses (AAV) used for the delivery of the components of the CRISPR system in the organism face some challenges, i.e., the encapsidation limit of 4,7 kb and a constitutive expression of the nuclease, which can lead to deleterious effects. My first article aims to show that it is possible to develop components of CRISPR/Cas9 technology small enough to be delivered by a single AAV in vivo to suppress the GAAr. This treatment should restore normal transcription and increase frataxin expression. The CjCas9, a Cas9 derived from Campylabacter jejuni, was chosen because of its reduced size to meet the packaging limit challenge of using a single AAV. Thus, a single AAV9 encoding the CjCas9 protein and the two sgRNAs were administered intraperitoneally to two mouse models YG8sR (250 à 300 GAA) and YG8-800 (800 GAA) at 10-11 days of age. Four weeks after treatment, the highest concentrations of virus were detected in the liver and in the heart. The GAA deletion rate was 4.7% and 2.4% in the heart, 17.5% and 14.5% in the liver for YG8sR and YG8-800 mice respectively. The increase in frataxin mRNA did not reach a significant level except in the liver of YG8-800 mice, an organ in which a 14.5% edit was detected. In view of the editing rates observed, it seemed necessary to us to propose and test an approach to improve the efficiency of the CRISPR system. Thus, in my second article, proteasome inhibitors were used to increase the stability of the CjCas9 protein. In fact, protein analysis by western blot revealed that treatment of cells with MG132 or bortezomib, two inhibitors of proteasome, significantly increased CjCas9 protein levels in HEK293T and HeLa cells. More interestingly, quantification by ddPCR showed that bortezomib treatment improved the efficiency of CjCas9 to delete the GAAr region on the FXN gene in HEK293T cells. Off-target mutations and the nuclease-mediated immune response pose a major challenge for the CRISPR/Cas9 system. In my third article, an induction approach called CRISPR-SCReT (CRISPR-Stop Codon Read Through) was explored to reduce the expression time of Cas9 to reduce the immune response and off-targets. To validate this system, HEK293T cells were co-transfected with a plasmid encoding CjCas9/2gsRNA. The CjCas9 gene in that plasmid was mutated to introduce a premature terminal codon (PTC). The cells were treated with different doses of geneticin (G418) for 48 h. Western blot confirmed that the expression of the CjCas9 protein, which was repressed by the PTC mutation, can be induced by the drug. GAAr editing was detected by PCR only in cells treated with G418. The approach has also been used successfully with the SpCas9, a Cas9 derived from Steptococcus pyogenes. All these results show that it is possible to remove GAAr in certain organs with CRISPR technology delivered in a single AAV. The temporary stabilization of CjCas9 allowed an increase in the editing rate in vitro. The CRISPR-SCReT method has made it possible to control the expression of Cas9 with appreciable genomic editing in vitro. Our work contributes to opening an avenue for the treatment of Freidreich's ataxia by the deletion of GAAr.
Identifer | oai:union.ndltd.org:LAVAL/oai:corpus.ulaval.ca:20.500.11794/116429 |
Date | 12 November 2023 |
Creators | Yameogo, Pouiré |
Contributors | Tremblay, Jacques-P. |
Source Sets | Université Laval |
Language | French |
Detected Language | French |
Type | COAR1_1::Texte::Thèse::Thèse de doctorat |
Format | 1 ressource en ligne (xix, 157 pages), application/pdf |
Rights | http://purl.org/coar/access_right/c_abf2 |
Page generated in 0.0026 seconds