• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 321
  • 112
  • 35
  • Tagged with
  • 452
  • 244
  • 179
  • 157
  • 79
  • 74
  • 70
  • 58
  • 53
  • 50
  • 47
  • 45
  • 41
  • 41
  • 39
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Le gène suppresseur de métastases Growth Arrest-Specific 1 (Gas1) est réprimé épigénétiquement chez le mélanome métastatique

Savard-Lalancette, Jimmy 19 April 2018 (has links)
Nous avons récemment découvert que le gène Gas1 agit comme un suppresseur de métastases chez le mélanome. Ce gène pourrait être utilisé pour d’éventuelles thérapies contre la métastase. Afin de découvrir le mécanisme réprimant l’expression de Gas1 chez les cellules métastatiques, nous avons utilisé des ChIP, des inhibiteurs chimiques et des petits ARN interférents contre des molécules susceptibles de réprimer Gas1. Chez le mélanome métastatique murin B16-F10, nous avons observé plusieurs groupements méthyles sur l’îlot CpG du promoteur de Gas1, ainsi que la marque de répression H3K9me3 et l’absence de la polymérase II. Chez les cellules humaines C8161 et Lox-IMVI, nous avons découvert qu’il y avait une forte présence d’acétylation au niveau de l’histone 3 et de polymérase II. Par ailleurs, nous avons prouvé que c-MYC et BRD4 étaient impliqués dans la régulation de GAS1. Finalement, ces résultats pourront être utilisés pour développer d’éventuelles thérapies contre la métastase.
2

Étude des gènes de fusion MLL dans les leucémies aigues humaines

Gil, Laurine 24 April 2018 (has links)
Les leucémies aigues sont la conséquence d’une prolifération clonale et maligne des cellules hématopoïétiques. Elles surviennent suite à un évènement oncogénique qui se produit dans une cellule souche hématopoïétique (CSH) ou progénitrice. Cela lui confère une certaine instabilité qui engendre l’accumulation d’autres évènements génétiques et/ou épigénétiques responsables du développement clinique de la maladie. Les leucémies MLL représentent environ 10% des leucémies aigues et aujourd’hui, plus de 70 gènes de fusion ont été caractérisés. Les sangs de cordon sont une source importante de CSH et progénitrices. La purification de ces cellules et leur transformation en cellules leucémiques à l’aide de gènes de fusion MLL nous permettent de générer des leucémies aigues humaines dans des souris immunodéficientes NSG et ainsi étudier le potentiel leucémique de différents gènes de fusion MLL. Dans un premier temps, 4 gènes de fusion MLL ont été étudiés : MLL-AF9, MLL-AF4, MLL-ENL et MLL-ELL. In vitro, nous sommes capables de transformer des CSH en cellules leucémiques capables de proliférer rapidement. Les résultats in vivo nous montrent qu’il est possible de générer des leucémies avec les oncogènes MLL-AF9 et MLL-ENL. Pour les fusions MLL-ELL et MLL-AF4, bien que quelques leucémies ont pu être obtenues, plusieurs problèmes techniques nous empêchent aujourd’hui de disposer d’un modèle adéquat permettant l’étude complète de ces oncogènes. Dans un second temps, les leucémies aigues MLL-AF9 ont été étudiées dans un modèle contrôlé où les cellules souches proviennent d’un donneur unique. Grâce à ce modèle, nous avons pu démontrer que l’oncogène MLL-AF9 est suffisant pour induire le développement de la maladie. En effet aucune nouvelle mutation n’a pu être identifiée au cours du développement de la leucémie. Parmi les leucémies myéloïdes aigues (LMA) MLL-AF9 issues de ce modèle, certains gènes non mutés, dont RET, ont été identifiés comme étant de potentiels biomarqueurs de ce sous-groupe de leucémie. / Acute leukemias result from a clonal and malignant proliferation of hematopoietic cells. They arise following an oncogenic event which occurs in a hematopoietic stem cell (HSC) or progenitor cell. This generates instability, causing the accumulation of other genetic and/or epigenetic events leading to the clinical development of the disease. MLL leukemias represent approximately 10 % of acute leukemias, and nowadays more than 70 fusion genes have been characterized. Cord blood is an important source of both HSCs and progenitor cells. Purification of these cells and subsequent transformation into leukemic cells allows us to induce human acute leukemia via MLL fusion genes into NSG immunodeficient mice and thus to study the leukemic potential of different MLL fusion genes. Firstly, four MLL fusion genes were studied: MLL-AF9, MLL-AF4, MLL-ENL and MLL-ELL. In vitro, we are able to transform HSC into leukemic cells which display rapid growth. The in vivo results showed that it is possible to induce leukemia by means of MLL-AF9 and MLL-ENL oncogenes. For the MLL- AF4 and MLL-ELL fusions, although some leukemias have been obtained, several technical difficulties prevented us from having an adequate model for the study of these oncogenes. Secondly, MLL-AF9 acute leukemias were studied in a model where stem cells originate from a single donor. Based on this model, we have determined that the single MLL-AF9 oncogene is sufficient to initiate disease. Indeed, no new mutations were identified during leukemia development. Among the different MLL-AF9 acute myeloid leukemias (AML) generated from this model, a certain number of non-mutated genes, notably the RET, have been identified as potential biomarkers for this specific subgroup of leukemia.
3

Utilisation du long ARN non codant conservé Tuna pour comprendre la biologie des IncRNAs

Anney, Princia 21 October 2019 (has links)
De récentes données suggèrent un rôle clé des longs ARNs non codants (lncRNAs) dans le développement et l’apparition de certaines maladies. Les lncRNAs se sont avérés difficiles à étudier en raison de leur faible niveau d’expression souvent tissu-spécifique, du manque de conservation de leur séquence, et du manque d’outils d’analyse spécifiques. Nous avons émis l’hypothèse que les méthodes d’étude des ARNs messagers peuvent être adaptées aux lncRNAs. Pour valider cette hypothèse, nos objectifs sont : 1-l’utilisation des nouvelles approches dérivées du système CRISPR/Cas9 pour activer et inhiber l’expression génique et 2-l’utilisation des méthodes conventionnelles de surexpression pour étudier les lncRNAs. Dans le cadre de cette étude, nous nous sommes concentrés sur un nouveau lncRNA, appelé Tuna (Tcl1 Upstream Neuron-Associated lncRNA). Ce lncRNA est nécessaire au maintien des cellules souches embryonnaires, mais aussi à leur différenciation vers le lignage neural. Résultats : la nouvelle approche CRISPR-a/i permet d’activer/inhiber le promoteur de Tuna et de réguler l’expression endogène de celui-ci. Ce système s’étant révélé efficace pour Tuna, cela suggère qu’il peut être appliqué à l’étude d’autres lncRNAs. D’autre part, la particularité de cet ARN est qu’il contient une région conservée entre les espèces d’environ 200 nucléotides, correspondant à un ORF pour un peptide de 48 acides aminés. En utilisant des méthodes conventionnelles de marquage par FLAG, on démontre que Tuna code pour ce peptide. Par ailleurs, en supprimant un site de liaison à la protéine HUR dans la région 3’UTR, on altère l’expression du peptide. Cela suggère que ce site est important pour la régulation de la traduction du peptide encodé par Tuna. En conclusion, nos résultats montrent que certaines méthodes d’étude des ARNs messagers sont transposables aux lncRNAs. Cependant, du fait des caractéristiques propres à ces derniers, d’autres approches sont à envisager pour mieux saisir leurs mécanismes. En perspective, ces méthodes vont permettre de mieux comprendre la fonction de Tuna dans les différents états cellulaires où il est exprimé.
4

Identification des conditions optimales d'utilisation de l'ADN polymérase Vent exo- dans la technologie LMPCR

Vigneault, François 11 April 2018 (has links)
L'étude des interactions ADN-protéines et de la structure de la chromatine dans les cellules vivantes est nécessaire à la compréhension des mécanismes de l'expression génique. La technique LMPCR ("ligation mediated polymerase chain reaction") permet l'étude in vivo de ces interactions par une analyse plus réelle des événements qui se déroulent au sein même des cellules, comparativement aux études in vitro. Par contre, la qualité des résultats peut-être grandement influencée par l'ADN polymérase utilisée et nécessite donc l'optimisation de plusieurs paramètres. De ce fait, nous avons identifié les conditions optimales d'utilisation de l'ADN polymérase Thermococcus litoralis exo- (Vent exo-) dans la technique LMPCR telle que la quantité de polymérase et d'ADN. Nous avons montré que l'efficacité de Vent exo- à l'extension d'amorces et à l'amplification était similaire à celle de Pyrococcus furiosus exo- (Pfu exo-) et supérieure à Thermus aquaticus (Taq). De plus, nous avons observé que la thermostabilité de Vent exo- lui permettait de soutenir un plus grand nombre de cycles d'amplification que Taq facilitant ainsi la résolution de séquences riches en GC. D'autre part, nous avons montré que l'activité terminale transférase de Vent exo- était inhibée dans la plupart de nos conditions expérimentales et qu'il était donc possible de l'utiliser efficacement pour la production d'extrémités franches lors de l'étape d'extension d'amorces. Finalement, l'ADN polymérase Vent exo- s'avère être une alternative efficace pour les étapes d'extension d'amorces et d'amplification PCR dans la technologie LMPCR.
5

Développement d'une approche thérapeutique pour les maladies héréditaires avec le Prime editing : une étude sur l'Alzheimer et la dystrophie musculaire de Duchenne

Tremblay, Guillaume 23 October 2023 (has links)
Titre de l'écran-titre (visionné le 31 juillet 2023) / Depuis 2019, un nouvel outil biologique a le potentiel de faciliter le champ d'application du système CRISPR-Cas9. Le Prime editing utilise un pegRNA (prime editing guide RNA) et une protéine fusionnée (SpCas9n-RT) comprenant une transcriptase inverse (un synthétiseur de brin) et une SpCas9n (un coupeur de brin) pour éditer le génome sans nécessiter une cassure double de l'ADN. La protéine SpCas9n-RT reconnaît une séquence d'amarrage spécifique PAM (Protospacer Adjacent Motif) et le pegRNA, une séquence précise de 20 nucléotides qui peut être modifiée selon un modèle prédéterminé. Cette technologie semble être un candidat idéal pour de futures thérapies géniques visant les mutations ponctuelles en raison de sa capacité à corriger spécifiquement les mutations ponctuelles souhaitées tout en diminuant les mutations hors cibles en raison des étapes supplémentaires requises lors de l'édition. Dans un premier temps, la première partie de ce mémoire vise principalement à démontrer que le Prime editing est une avenue thérapeutique intéressante pour la dystrophie musculaire de Duchenne, soit en modifiant directement le gène de la dystrophine. Les expériences ont été réalisées sur des cellules HEK293T, puis sur des modèles murins. Nous avons déterminé que le gène de la dystrophine est facilement modifiable, et ce, efficacement sur des cellules HEK293T avec le Prime editing optimisé. La deuxième partie de ce mémoire est constitué d'un article traitant sur l'introduction de la mutation protectrice de l'Alzheimer (A673T) avec le Prime editing. Les expériences ont été réalisées sur des cellules HEK293T. Plusieurs techniques d'optimisation du système dérivé de CRISPR-Cas9 ont été comparées dans le but d'obtenir une édition génique efficace et avec un bas taux d'indels (insertion-deletion). Les résultats obtenus sur la dystrophie musculaire de Duchenne et la maladie d'Alzheimer seront des éléments importants dans le développement d'une approche unique, efficace et reproductible pour corriger différentes mutations ponctuelles responsables de milliers de maladies génétiques. / Since 2019, a new biological tool has the potential to facilitate the scope of the CRISPR-Cas9 system. Prime editing, consisting of a pegRNA (a guide for editing) and a fusion protein (SpCas9n-RT) including a reverse transcriptase (a strand synthesizer) and a SpCas9n (a strand cutter) enables editing of the genome without requiring a double DNA break. The SpCas9n-RT protein recognizes a specific PAM (adjacent protospacer motif) docking sequence and the pegRNA, a precise sequence of 20 nucleotides that can be modified according to a predetermined pattern. This technology appears to be an ideal candidate for future gene therapies targeting point mutations due to its ability to specifically correct desired point mutations while decreasing off-target mutations due to the additional steps required during editing. The first part of this thesis mainly aims to demonstrate that Prime editing is an interesting therapeutic avenue for Duchenne muscular dystrophy by directly modifying the dystrophin gene. The experiments were carried on HEK293T cells and then on mouse models. We have determined that the dystrophin gene was efficiently editable on HEK293T cells with the optimized Prime editing. The second part of this thesis consists of an article about the introduction of a protective mutation of Alzheimer's (A673T) with Prime editing. The experiments were carried on HEK293T cells. Several techniques for optimizing the CRISPR-Cas9-derived system were compared in order to obtain efficient gene editing with a low indel rate. The results obtained on Duchenne muscular dystrophy and Alzheimer's disease will be important elements in the development of a unique, effective and reproducible approach to correct various point mutations responsible for thousands of genetic diseases.
6

Thérapie génique de la dystrophie musculaire de duchenne : utilisation de transgènes de la dystrophine chez le modèle canin

Pichavant, Christophe 16 April 2018 (has links)
La dystrophie musculaire de Duchenne (DMD) est une maladie génétique qui touche environ 1 garçon sur 3500. Cette pathologie liée au chromosome X est caractérisée par l’absence de dystrophine au niveau des muscles. Ce manque de dystrophine fragilise le sarcolemme des fibres musculaires menant à une faiblesse progressive du muscle. Les patients décèdent généralement dans la vingtaine et il n’y a pas à l’heure actuelle de traitement curatif pour cette maladie. Une approche pour restaurer la dystrophine chez le patient DMD est d’introduire un transgène codant pour cette protéine dans ses muscles. Cela peut être fait par thérapie génique et particulièrement par la thérapie génique ex vivo et l’électroporation. Bien que ces deux techniques aient fait leurs preuves dans différents modèles animaux, elles n’ont jamais été utilisées chez le chien dystrophique alors que c’est le modèle le plus proche de la DMD en termes de phénotype. Deux versions de la dystrophine de chien ont été utilisées dans nos expériences : une version pleine longueur et une autre plus petite afin qu’elle puisse être incluse dans un lentivirus. La transplantation de myoblastes génétiquement modifiés par ce lentivirus (thérapie génique ex vivo) nous a permis d’obtenir l’expression de micro-dystrophine dans les muscles des souris immunodéficientes greffés. Néanmoins, l’autotransplantation de myoblastes de chien génétiquement modifiés a mené à un rejet spécifique des cellules greffées. L’électroporation, c.-à-d. l’injection de plasmide suivie d’un choc électrique, a également été utilisée pour introduire ce transgène ainsi que celui de la dystrophine pleine longueur dans des muscles de souris et de chien. Ces deux transgènes furent retrouvés avec succès chez la souris et le chien. Cependant, des infiltrations de cellules de l’immunité spécifique furent retrouvées au niveau des fibres exprimant le transgène chez le chien (pour l’utilisation de micro-dystrophine) et chez le chien dystrophique (pour la dystrophine pleine longueur). Bien que les résultats obtenus avec la thérapie génique ex vivo et l’électroporation soient très bons chez la souris, ceux obtenus chez le chien sont plus modérés. Il reste donc encore beaucoup d’améliorations à apporter à ces deux méthodes avant qu’elles puissent être utilisées comme approche thérapeutique dans le cadre de la DMD. / Duchenne muscular dystrophy is a genetic disease affecting 1 out of every 3500 boys. This X-linked pathology is characterised by the absence of dystrophin in myofibers. This lack of dystrophin leads to a progressive muscular degeneration. DMD patients die between 17 and 30 years of age. There are currently no curative treatments for this disease. An approach to restore dystrophin in DMD patients is to introduce a transgene coding for this protein into their muscles. This can be done by gene therapy, particularly by ex vivo gene therapy or by electroporation. Even if these 2 techniques have shown good results in mouse models, they have not been used in the dystrophic dog. Two different isoforms of the dystrophin were used in our experiments: the full length dog dystrophin and a shorter version, the dog micro-dystrophin, introduced in a lentivirus backbone. Myoblasts were transduced with this lentivirus and transplanted successfully in immunodeficient mouse. However, the autotransplantation of genetically modified dog myoblasts led to a specific rejection of the grafted cells. A non viral gene therapy (electroporation, i.e., injection of a plasmid followed by a sequence of electric pulses) was used to introduce these two different isoforms of dystrophin in mouse and (normal and dystrophic) dog muscles. The two transgenes were electroporated with success in these muscles. However, a specific immune response was found in some myofibers expressing the transgene in the normal dog (using micro-dystrophin) and in the dystrophic dog (using full length dystrophin). Although the results obtained with the ex vivo gene therapy and with the electroporation were relatively effective in the mouse model, those obtained with the dog model were much lower. Thus, lots of improvements remain to be made in order to consider these two techniques as potential approaches to restore dystrophin in a large animal model and eventually in DMD patients.
7

Optimisation du système d'édition génique CRISPR-Cas

Duringer, Alexis 10 May 2024 (has links)
Développé en 2012, le système CRISPR-Cas a d'ores et déjà révolutionné les sciences du vivant en démocratisant l'édition du génome grâce à sa simplicité d'usage, sa forte efficacité et son adaptabilité. Néanmoins, l'efficacité et la précision de ce système varient grandement ce qui peut freiner ou empêcher sa mise en place. Mes travaux de doctorat se sont articulés autour de ces deux thématiques. L'édition du génome à l'aide de nucléases artificielles repose sur l'activation des voies de réparation de la cellule par induction d'une cassure double brin (DSB) dans l'ADN. Le système CRISPR-Cas est composé d'une nucléase (Cas) associée à un ARN guide qui se lie à la séquence ciblée par appariement de base. Une fois la DSB induite par la nucléase, plusieurs mécanismes de réparation entrent en compétition pour réparer la cassure. La réparation par jonction d'extrémités non-homologues (NHEJ) peut entrainer l'insertion de mutations ce qui permet de réaliser des inactivations de gène alors que la réparation par recombinaison homologue (HDR) permet des corrections ou insertions précises. Les stratégies les plus répandues pour améliorer l'efficacité de l'édition génique reposent sur l'utilisation de marqueurs de sélection. Néanmoins, ces marqueurs peuvent influencer la physiologie des cellules et leur utilisation n'est pas envisageable dans un cadre thérapeutique. Pour y remédier nous avons développé une méthode de cosélection sans marqueur se basant sur la création d'un allèle à gain de fonction. En modifiant le gène ATP1A1 encodant pour la pompe Na+/K+ ATPase par NHEJ et HDR nous avons conféré une résistance à l'ouabaïne aux cellules tout en conservant la fonctionnalité de la pompe. En ciblant simultanément le gène ATP1A1 et un gène d'intérêt, le traitement des cellules à l'ouabaïne permet de sélectionner les cellules résistantes et enrichir la population en cellules génétiquement modifiées dans le gène d'intérêt. Nous avons obtenu des augmentations drastiques de l'efficacité de NHEJ et de HDR et la cosélection à l'aide de Cas12a permet d'enrichir facilement et simultanément de multiples cibles. La méthode est simple et rapide à mettre en place et nous avons démontré sa versatilité en l'appliquant à diverses lignées cellulaires dont les cellules souches et progénitrices hématopoïétiques couramment utilisées en thérapie génique ex vivo, ce qui permet d'envisager de futures applications thérapeutiques. Notre stratégie a été déployée dans de nombreux laboratoires depuis sa publication et, de manière significative, elle a également été utilisée pour enrichir les événements de réparation des éditeurs de base et éditeurs par transcriptase inverse (prime editing) et pourrait aussi être applicable aux futurs outils d'édition du génome. La HDR est la voie privilégiée pour des perspectives thérapeutiques. Néanmoins, la NHEJ est la voie de réparation majoritaire dans les cellules humaines et la recombinaison homologue n'est active que lors des phases S et G2 du cycle cellulaire. La fusion de Cas9 avec le dégron de la géminine a permis de restreindre son activité aux phases S, G2 et M du cycle cellulaire et augmenter sensiblement le ratio de réparation par HDR. Parallèlement à la réplication de l'ADN, la recombinaison homologue présente un pic d'activité en milieu de phase S puis son activité diminue. Nous avons émis l'hypothèse que restreindre l'activité de la nucléase à la phase S permettrait d'augmenter davantage le ratio de réparation par HDR. Néanmoins, aucun dégron existant ne permet une dégradation lors des phases G1, G2 et M. Le système d'identification Fucci se base sur la fusion de dégrons à des protéines fluorescentes pour marquer les différentes phases du cycle cellulaire. Afin de développer un nouveau dégron permettant d'améliorer les systèmes Fucci et CRISPR, nous nous sommes intéressés à SLBP, une protéine active uniquement lors de la phase S. Nous avons caractérisé son dégron et l'avons utilisé afin de développer une sonde fluorescente spécifique de la phase S dont le profil d'expression a été confirmé par cytométrie en flux et microscopie en temps réel. Le marquage précis de la phase S pourrait notamment aider à élucider les voies de réparation de l'ADN. Nous avons également démontré que la fusion d'un de nos dégrons avec SpCas9 permet d'augmenter le taux de réparation par HDR de manière plus significative que le dégron de la géminine. Il sera intéressant d'évaluer sa synergie avec d'autres stratégies d'optimisation du système CRISPR. / Developed in 2012, the CRISPR-Cas system has rapidly revolutionized life sciences and is routinely used in research laboratories worldwide. Its efficiency, simplicity and versatility greatly facilitate gene editing and functional genomics. However, the variability of its precision and efficiency is a major concern since it restrains its implementation, especially for therapeutic use. My PhD investigations revolves around these challenges. Gene editing through artificial nucleases relies on inducing a double-strand break (DSB) in the DNA to activate cellular repair pathways. For CRISPR-Cas systems, targeting is realised through base pairing between the targeted sequence and a guide RNA that associates with the Cas nuclease, making the design of new guides a simple process. Once the nuclease has elicited the DSB, several repair mechanisms compete to repair the break. Non-homologous end joining (NHEJ) can lead to mutations in the targeted sequence and allows gene knock-out while homology-directed repair (HDR) permits precise corrections or insertions. The most common strategy to enrich for cells that have undergone the desired genetic modification relies on the use of selection markers. However, since these markers can impact cell physiology, they are not suitable for therapeutic use. To address this issue, we have developed a marker free co-selection method based on the creation of a gain of function allele. By targeting ATP1A1, the gene encoding for the Na+/K+ ATPase pump, we conferred resistance to ouabain to the cells by either NHEJ or HDR while conserving the pump properties. Simultaneous targeting of ATP1A1 and a gene of interest followed by cell treatment with ouabain allows enrichment for cells genetically modified in the gene of interest. We observed a drastic improvement in efficiency for both NHEJ and HDR events and several targets can be enriched simultaneously and easily by exploiting Cas12a multiplexing capabilities. It's a simple and fast strategy and we have demonstrated its versatility by modifying various cell lines including hematopoietic and progenitor stem cells, commonly used in ex vivo gene therapy, demonstrating therapeutic potential. Since its publication, the ATP1A1 co-selection strategy has been exploited in numerous laboratories and successfully applied to enrich for base and prime editors' modifications and it could as well be applied to future genome editing tools, further demonstrating its versatility. Due to its fidelity, HDR is the preferred pathway for potential therapeutic use. Nevertheless, NHEJ is the major repair mechanism in human cells and homologous recombination is only active during S and G2 cell cycle phases. Although inhibiting NHEJ or promoting HDR by targeting proteins involved in these pathways is greatly efficient, the efficiency variability between cell lines and toxicity is considerable. Fusing Cas9 to the geminin degron restricts its activity to the S, G2 an M phases and slightly improves the HDR ratio. Alongside DNA replication, homologous recombination activity is thought to peak in the mid S phase and decline during G2 phase. We hypothesized that restricting Cas9 nuclease expression to the S phase will further bias repair towards HDR. However, no degron allowing G1, G2 and M phases degradation has been developed yet. The Fucci system is based on the fusion between degrons and fluorescent proteins to distinguish the different cell cycle phases but lack an S-phase specific probe. To improve cell cycle identification and HDR ratio, we decided to develop a degron allowing such a regulation. In that order, we studied the stem-loop binding protein (SLBP) which bind histone mRNAs and is only active during S phase and is degraded in other phases. We analysed SLBP endogenous expression pattern, characterised its degron, and used it to engineer an S-phase specific probe that we named Fucci-S. K562 and HeLa S3 cells constitutively expressing Fucci-S probe were created and their fluorescence expression pattern were analysed by FACS and live cell microscopy to confirm its S-phase specificity. Combined with the Fucci probes it allows to differentiate all the cell cycles phases and could be used in developmental and DNA repair studies. Fusing one of our newly developed degrons to SpCas9 increases HDR ratio more than the geminin degron. Additional studies would allow to establish its range of use and how it synergizes with other CRISPR-Cas optimisation strategies.
8

Développement d'une approche de thérapie génique pour l'ataxie de Friedreich par la délétion de l'expansion GAA dans le gène de la frataxine

Yameogo, Pouiré 12 November 2023 (has links)
Thèse ou mémoire avec insertion d'articles / L'ataxie de Friedreich (FRDA), une maladie neurodégénérative autosomique récessive, est l'ataxie héréditaire la plus fréquente dans le monde. Elle touche principalement les individus de race caucasienne, et sa prévalence est très variable entre les régions allant de 1/20 000 à 1/50 000. Cette pathologie est causée majoritairement par une insertion d'une série de répétition GAA (GAAr) dans le premier intron du gène de la frataxine (FXN) conduisant à une diminution de l'expression de cette protéine. Selon plusieurs auteurs, la délétion des GAAr par la technologie CRISPR/Cas9 permet d'améliorer la synthèse de la frataxine. Notre hypothèse est qu'il est possible de livrer les composants de la technologie CRISPR/Cas9 dans un seul AAV pour induire une délétion des GAAr afin de restaurer une transcription normale de la frataxine. Cependant, les virus adéno-associés (AAV) utilisés pour la livraison des composants du système CRISPR dans l'organisme font face à certains défis : une limite d'encapsidation (4,7 kb) et une expression constitutive de la nucléase qui peut entraîner des effets délétères. Mon premier article, vise à démontrer que pour supprimer la répétition GAA dans les cellules in vivo, il est possible d'utiliser certains composants de la technologie CRISPR/Cas9 suffisamment petits pour être incorporés dans un seul AAV. Ce traitement devrait restaurer une transcription normale et augmenter ainsi l'expression de la frataxine. La Cas9 dérivé de Campylabacter jejuni (CjCas9) est la plus petite Cas9 identifiée jusqu'à ce jour et peut permettre aux composants du système CRISPR d'être inclus dans un seul AAV. Ainsi, un AAV9 codant pour la protéine CjCas9 et deux ARNgs a été administré par voie intrapéritonéale à deux modèles de souris YG8sR (250 à 300 GAA) et YG8-800 (800 GAA) à l'âge de 10 - 11 jours. Quatre semaines après le traitement, les plus fortes concentrations de virus ont été détectées dans le foie et dans le cœur. Le taux de délétion des GAA était de 4,7 % et 2,4 % dans le cœur, 17,5 % et 14,5 % dans le foie pour les souris YG8sR et YG8-800 respectivement. L'ARNm de la frataxine n'a augmenté significativement que dans le foie des souris YG8-800, organe dans lequel une édition de 14,5 % avait été détectée. Au regard des taux d'édition observés, il nous a semblé nécessaire de proposer et tester une approche pour améliorer l'efficacité du système CRISPR. Ainsi, dans mon deuxième article, les inhibiteurs du protéasome ont été utilisés pour augmenter la stabilité de la protéine CjCas9. De ce fait, une analyse par western blot a révélé que le traitement des cellules avec le MG132 ou le bortézomib, 2 inhibiteurs du protéasome, augmentait significativement les niveaux de protéine CjCas9 dans les cellules HEK293T et HeLa. De plus, la quantification par ddPCR a montré que le traitement avec le bortézomib améliorait l'efficacité de la CjCas9 et augmentait le taux de correction du gène de FXN dans les cellules HEK293T. Finalement, les mutations hors cibles et la réaction immunitaire induite par la nucléase constituent un défi majeur pour le système CRISPR/Cas9. Dans mon troisième article, une approche par induction dénommée CRISPR-SCReT (CRISPR-Stop Codon Read Through) a été explorée pour réduire le temps d'expression de la CjCas9 afin de diminuer la réponse immune contre cette protéine et réduire les mutations hors cible (off-targets mutations). Pour valider ce système, des cellules HEK293T ont été co-transfectées avec un plasmide codant pour la CjCas9/2ARNgs, dans lequel le gène de la CjCas9 a été muté pour introduire un codon-stop prématuré (Premature Terminal Codon, PTC). Les cellules ont été traitées avec différentes doses de généticine (G418) pendant 48 h. Le western blot a confirmé que l'expression de la protéine Cas9, qui a été a réprimée par la mutation PTC, peut être induite par la G418. La délétion des GAAr a été détectée par PCR uniquement dans les cellules traitées avec la G418. L'approche a également été utilisée avec succès avec la SpCas9, une Cas9 provenant de Steptococcus pyogenes. L'ensemble de ces résultats montrent qu'il est possible d'enlever le GAAr dans certains organes avec la technologie CRISPR livrée par un seul AAV. La stabilisation temporaire de la CjCas9 a permis in vitro une augmentation du taux d'édition. La méthode CRISPR-SCReT a permis de contrôler l'expression de la Cas9 tout en permettant une édition génomique appréciable in vitro. Nos travaux contribuent à ouvrir une avenue pour le traitement de l'ataxie de Freidreich par la délétion des GAAr. / Friedreich's ataxia (FRDA), an autosomal recessive neurodegenerative disease, is the most common hereditary ataxia. It mainly affects individuals of the Caucasian race, and its prevalence is highly variable between regions ranging from 1/20,000 to 1/50,000 individual. This pathology is caused by an insertion of a series of GAA repeat (GAAr) in the first intron of the frataxin gene (FXN) leading to a decrease in the expression of this protein. According to several authors, the deletion of GAAr by CRISPR/Cas9 technology improves the expression of frataxin. Our hypothesis is that it is possible to deliver CRISPR/Cas9 technology components with a single AAV to induce deletion of GAAr to restore normal transcription of frataxin. However, the adeno-associated viruses (AAV) used for the delivery of the components of the CRISPR system in the organism face some challenges, i.e., the encapsidation limit of 4,7 kb and a constitutive expression of the nuclease, which can lead to deleterious effects. My first article aims to show that it is possible to develop components of CRISPR/Cas9 technology small enough to be delivered by a single AAV in vivo to suppress the GAAr. This treatment should restore normal transcription and increase frataxin expression. The CjCas9, a Cas9 derived from Campylabacter jejuni, was chosen because of its reduced size to meet the packaging limit challenge of using a single AAV. Thus, a single AAV9 encoding the CjCas9 protein and the two sgRNAs were administered intraperitoneally to two mouse models YG8sR (250 à 300 GAA) and YG8-800 (800 GAA) at 10-11 days of age. Four weeks after treatment, the highest concentrations of virus were detected in the liver and in the heart. The GAA deletion rate was 4.7% and 2.4% in the heart, 17.5% and 14.5% in the liver for YG8sR and YG8-800 mice respectively. The increase in frataxin mRNA did not reach a significant level except in the liver of YG8-800 mice, an organ in which a 14.5% edit was detected. In view of the editing rates observed, it seemed necessary to us to propose and test an approach to improve the efficiency of the CRISPR system. Thus, in my second article, proteasome inhibitors were used to increase the stability of the CjCas9 protein. In fact, protein analysis by western blot revealed that treatment of cells with MG132 or bortezomib, two inhibitors of proteasome, significantly increased CjCas9 protein levels in HEK293T and HeLa cells. More interestingly, quantification by ddPCR showed that bortezomib treatment improved the efficiency of CjCas9 to delete the GAAr region on the FXN gene in HEK293T cells. Off-target mutations and the nuclease-mediated immune response pose a major challenge for the CRISPR/Cas9 system. In my third article, an induction approach called CRISPR-SCReT (CRISPR-Stop Codon Read Through) was explored to reduce the expression time of Cas9 to reduce the immune response and off-targets. To validate this system, HEK293T cells were co-transfected with a plasmid encoding CjCas9/2gsRNA. The CjCas9 gene in that plasmid was mutated to introduce a premature terminal codon (PTC). The cells were treated with different doses of geneticin (G418) for 48 h. Western blot confirmed that the expression of the CjCas9 protein, which was repressed by the PTC mutation, can be induced by the drug. GAAr editing was detected by PCR only in cells treated with G418. The approach has also been used successfully with the SpCas9, a Cas9 derived from Steptococcus pyogenes. All these results show that it is possible to remove GAAr in certain organs with CRISPR technology delivered in a single AAV. The temporary stabilization of CjCas9 allowed an increase in the editing rate in vitro. The CRISPR-SCReT method has made it possible to control the expression of Cas9 with appreciable genomic editing in vitro. Our work contributes to opening an avenue for the treatment of Freidreich's ataxia by the deletion of GAAr.
9

Développement d'une thérapie génique pour l'Ataxie de Friedreich en induisant l'expression du gène de la frataxine avec les TALEs-FT

Cherif, Khadija 17 April 2019 (has links)
L’ataxie de Friedreich (FRDA) est la plus fréquente des ataxies héréditaires autosomiques récessives. FRDA est due à une mutation du gène de la frataxine (FXN) situé sur le chromosome 9, q13. Cette mutation est une augmentation du nombre de répétitions du trinucléotide GAA au niveau du 1er intron du gène de la frataxine (FXN). Le nombre de trinucléotides augmente de moins 30 chez les sujets normaux jusqu’à 1300 chez les patients. Cela a pour conséquence de diminuer l’expression de la protéine frataxine, une protéine qui joue un rôle important dans le métabolisme du fer dans la mitochondrie. Monprojet traite de l’utilisation des protéines TALE-platinum (plTALE) fusionnées avec des systèmes permettant une stimulation de la transcription(FT), tel que VP64 ou P300. Ces plTALEs ciblent spécifiquement la région régulatrice du gène FXN pour augmenter sa transcription et ainsi induire une augmentation de l’expression de la protéine frataxine. Les plTALEs contiennent des variations au niveau des acides aminés 4 et 30 pour chaque RVD (Repeat Variable Di-residues) en plus des variations des acides aminés 12 et 13. Ces variations permettent d’augmenter la spécificité des plTALEs pour les séquences nucléotidiques ciblées. L’assemblage des RVD de plTALEs a été fait par 4-modules RVD ce qui permet d’obtenir un rendement d’assemblage de 100%. Nous avons produit 34 effecteurs plTALE-FT qui ciblent 14 séquences du gène FXN afin, de sélectionner 3 plTALE-VP64 et 2 plTALE-SunTag10X qui peuvent augmenter la transcription et l’expression du gène FXN de 2 fois jusqu’à 19 fois dans les différentes cellules modèles FRDA. Nous avons quantifié le taux de synthèse des ARNm et de la protéine FXN après le traitement in vitroavecces plTALEs-FT par qRT-PCR et westerns. Les résultats montrent que ces plTALES-FT sélectionnés induisent l’activité transcriptionnelle du gène endogène FXN, ainsi que l’expression de la protéine frataxine in vitro. L’augmentation de la frataxine augmente l’activité d’aconitase qui est modulée réversiblement par le niveau de la frataxine dans la mitochondrie. Nous avons utilisé un virus AAV9 pour livrer plTALE-FT dans les souris modèles de FRDA dans le but de valider l’efficacité de ces effecteurs in vivoavant de passer aux tests précliniques. Les résultats de ces traitements in vivo ne sont pas encore disponibles. / Friedreich's ataxia (FRDA) is the most frequent autosomal recessive hereditary ataxia. FRDA is due to a mutation of the frataxin gene (FXN) located on chromosome 9, q13. This mutation is an increase in the number of repetitions of the trinucleotide GAA in the 1st intron of the frataxine gene (FXN). The number of trinucleotides increases from less than 30 in normal subjects up to 1300 in patients. This decreases the expression of the protein frataxin, a protein which plays an important role in the metabolism of iron in the mitochondria. My project deals with the use of TALE-platinum (plTALE) proteins fused with transcription-enhancing systems (FT), such as VP64 or P300. These plTALEs specifically target the regulatory region of the FXN gene to increase its transcription and thusinduce an increase in the expression of the frataxin protein.The plTALEs contain variations in amino acids 4 and 30 for each Repeat Variable Diresidues in addition to the variations of amino acids 12 and 13. These variations make it possible to increase the specificity of the plTALEs for the targeted nucleotide sequences. The assembly of the RVDs of plTALEs was done using modules containing 4 RVDs, which makes it possible to obtain anassembly efficiency of 100%. We produced 34 plTALE-FT effectors that target 14 sequences of the FXN gene to select 3 plTALE-VP64 and 2 plTALE-SunTag10X, which increased FXN gene transcription and expression by up to 19-folds in different FRDA model cells. We quantified the synthesis of mRNAs and of FXN protein after in vitro treatment with these plTALEs-FT by qRT-PCR and westerns. The results show that these selected PlTAL-FT induced the transcription of the endogenous FXN gene as well as the expression of the frataxin protein in vitro. The increase in frataxin increased the aconitase activity, which is modulated reversibly by the level of frataxin in the mitochondria. We used an AAV9 virus to deliver plTALE-FT in FRDA model mice to validate the efficacy of these effectors in vivobefore proceeding to preclinical testing. The results of these in vivotreatments are not yet available.
10

Expression et localisation de la connexine 43 dans le glioblastome : implication pour la thérapie génique

Carrondo Cottin, Sylvine 20 April 2018 (has links)
L’effet de proximité est essentiel à la réussite de la stratégie thymidine kinase (HSV-tk)/ganciclovir (GCV) dans le traitement du cancer. Cette propriété correspond au transfert de GCV phosphorylé des cellules tumorales HSV-tk+ vers les cellules tumorales HSV-tk–, et est essentiellement médiée par les jonctions gap (JGs) constituées de molécules de connexine (Cx). Une perte d’expression et/ou une localisation périnucléaire des connexines est souvent décrite dans les tumeurs, ce qui pourrait conduire, en théorie, à une diminution de l’efficacité du traitement HSV-tk/GCV. L’approche HSV-tk/GCV a été testée au cours d’essais cliniques pour le traitement du glioblastome bien que l’expression de la Cx43 (principal constituant des JGs dans les astrocytes) ne soit parfaitement définie. Au cours de mes travaux, l’expression de la Cx43, sa localisation et sa fonctionnalité ont été étudiées dans des lignées établies, des biopsies et des cultures primaires de glioblastome. Dans les trois lignées immortalisées de glioblastome étudiées, la Cx43 se retrouve essentiellement localisée dans les endosomes et les lysosomes comparativement aux cellules HeLa/Cx43 qui présentent une localisation membranaire de la Cx43. Des JGs ont été observées dans la lignée U87, mais très peu dans les lignées SKI-1 et U251. De façon surprenante, les lignées SKI-1 et U87 présentent une capacité jonctionnelle supérieure à celle des cellules HeLa/Cx43. De plus, un important effet de proximité a pu être mesuré dans les cellules SKI-1 et U87 suite au traitement par le GCV. L’utilisation d’un inhibiteur spécifique de la perméabilité des JGs a confirmé que l’effet de proximité induit dans ces lignées est principalement dû aux JGs. De plus, la transfection d’un mutant dominant négatif de la Cx43 ou de siARN spécifiques des ARNm de la Cx43 a permis d’identifier la Cx43 comme le principal constituant des JGs dans ces lignées de glioblastome. L’expression de la Cx43 a été mesurée sur soixante-quatorze biopsies de glioblastome. Si son expression est souvent plus faible que dans le tissu sain, seulement 23% des échantillons sont dépourvus de Cx43. Huit lignées primaires ont été dérivées de résections de patients, et sept d’entre elles expriment la Cx43, cependant à différents niveaux d’intensité. Quatre lignées démontrent une localisation cytoplasmique de la Cx43. Malgré la localisation cytoplasmique prédominante de la Cx43, ces cellules sont capables de communiquer entre elles efficacement comme l’essai de double marquage en cytométrie de flux l’a démontré. Un vecteur lentiviral contenant le gène HSV-tk a été construit afin de mener les tests d’effet de proximité. Il a ainsi été mis en évidence que quelle que soit la localisation de la Cx43, l’effet de proximité est significatif dans toutes les lignées exprimant la Cx43 et inexistant lorsque la Cx43 n’est pas présente. Ces résultats démontrent que la Cx43 est exprimée dans la majorité des glioblastomes. La Cx43 peut être exprimée dans les lignées établies et les lignées primaires de glioblastome au niveau de la membrane plasmique ou dans le cytoplasme. Cette localisation aberrante ne bloque pas le transfert intercellulaire de molécules, ce qui suggère que les rares JGs présentes à la surface sont hautement fonctionnelles. Ces résultats indiquent que l’approche HSV-tk/GCV est un candidat valable pour le traitement du glioblastome, contrairement à d’autres tumeurs pour lesquelles la perte d’expression de Cx est bien documentée. Il serait ainsi intéressant que l’expression de la Cx43 soit étudiée dans les biopsies utilisées lors du diagnostic et constitue ainsi un prérequis pour le recrutement des patients lors d’essais cliniques. / The bystander effect is essential to the success of the Herpes simplex virus thymidine kinase (HSV-tk)/ganciclovir (GCV) strategy for cancer therapy. It consists of the transfer of phosphorylated GCV from HSV-tk+ cells to neighboring HSV-tk- cells, and it is mainly mediated via gap junctions that are made up of connexin molecules (Cx). Down-regulation and/or perinuclear localization of Cxs are common in tumors, and in theory it should decrease the efficacy of the HSV-tk/GCV treatment. The HSV-tk/GCV approach has been tested in glioblastoma patients although the status of Cx43 expression (the Cx member expressed in astrocytes) is unclear in this tumor type. In this study, we have carefully evaluated the Cx43 expression, specific localization and functionality in glioblastoma cell lines, biopsies and primary glioblastoma cell cultures. In the glioblastoma cell lines studied (SKI-1, U251 and U87), Cx43 accumulated mainly in late endosomes and lysosomes as compared to HeLa/Cx43 transfected cells that displayed Cx43 at the cellular membrane. Gap junctions were observed in U87 cells, but very few or rare plaques were present at the surface of SKI-1 and U251 cells, respectively. Surprisingly, calcein, a dye commonly used to assess the functionality of gap junctions, was able to diffuse more efficiently within U87 and SKI-1 cells than in HeLa/Cx43 cells. Furthermore, a strong bystander effect was mediated by HSV-tk+ SKI-1 and U87 cells treated with GCV. The use of a specific inhibitor of gap junction permeability, confirmed that the bystander effect in these cell lines was mainly due to gap junctions. Moreover, transfection of a Cx43 dominant negative mutant and specific siRNA against Cx43 mRNA defined this Cx subtype as the major component of gap junctions in these glioblastoma cell lines. The level of Cx43 expression was next assessed in seventy-four glioblastoma biopsies. Cx43 expression was mainly lower than in normal tissue, but only 23% of the glioblastoma samples studied lacked Cx43 expression. Eight glioblastoma primary cultures were derived from surgical resection, and seven of them expressed Cx43, although at different levels. A cytoplasmic localization of Cx43 was also observed in four primary cultures. Despite this predominant intracellular accumulation of Cx43, cells were able to communicate in an efficient manner as demonstrated with a dye transfer assay. A lentiviral vector containing HSV-tk has been constructed and bystander effect experiments with these primary glioblastoma cells were carried out. We noticed that the bystander effect was significative in primary cells expressing Cx43 wherever the Cx43 was localized, and no bystander effect was detected in cells without Cx43 expression. Our results indicate that Cx43 is expressed in the majority of glioblastomas. Cx43 can be found in glioblastoma cell lines and primary cultures at the cell surface, but also in perinuclear areas. This aberrant localization of Cx43 did not prevent the diffusion of molecules, suggesting that the few gap junction plaques present in glioblastoma cells are highly functional. These results suggest that glioblastoma is a suitable candidate for the HSV-tk/GCV approach contrary to some other tumor types in which the lack of Cx has been well documented. According to these results, the level of Cx43 should be tested in patient biopsies used for diagnostics and considered for patient enrollment in clinical trials.

Page generated in 0.0427 seconds