• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 322
  • 112
  • 39
  • Tagged with
  • 457
  • 244
  • 182
  • 159
  • 79
  • 75
  • 70
  • 58
  • 53
  • 50
  • 47
  • 45
  • 41
  • 41
  • 40
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Étude de l'expression des gènes dans les cellules du follicule ovarien humain post ovulation afin d'identifier les causes d'échec en fécondation in vitro

Fortin, Chloé 27 January 2024 (has links)
Depuis les dernières décennies, la parentalité est un projet qui se voit pour plusieurs repoussé à un âge plus avancé. Par conséquent, de plus en plus de couples font face à des problèmes d'infertilité lors que vient le temps de fonder une famille. Le recours aux techniques de procréation médicalement assistée, telle que la fécondation in vitro, est donc lui aussi en constante augmentation. Malgré les nombreux progrès réalisés depuis l'introduction de la fécondation in vitro dans les années 80, le taux de succès de cette technique demeure insatisfaisant, avec un taux de grossesse autour de 30%. La réponse des patientes au traitement de stimulation ovarienne précédant la fécondation in vitro est extrêmement variable et difficile à prédire. De plus, lorsqu'un cycle échoue, c'est généralement sans raison apparente. Les travaux de cette thèse reposent sur l'hypothèse qu'il existe une signature moléculaire liée aux différentes réponses/causes d'échec. L'expression des gènes pourrait être utilisée pour caractériser la réponse des patientes à la stimulation hormonale de façon à pouvoir adapter le traitement suivant et potentiellement améliorer les chances de succès. Nous nous sommes donc intéressés à l'expression des gènes dans les cellules de la granulosa provenant principalement de follicules en contexte de stimulation hormonale, durant la période 34 heures post hCG ou encore provenant d'un modèle in vitro de culture cellulaire. Dans un premier temps, des cellules folliculaires provenant de femme ayant recourt à la fécondation in vitro ont été récoltées lors de la ponction ovarienne. Une biopuce fut utilisée afin de comparer l'expression des gènes entre les patientes pour qui le cycle de fécondation in vitro fut un échec (pas de grossesse) et celles pour qui ce fut un succès(grossesse). Nous avons constaté qu'il existe une signature transcriptomique différente chez les patientes pour qui le cycle a échoué. De plus, l'analyse des gènes différentiellement exprimés et des principales voies biologiques y étant associée nous ont renseignés davantage sur les mécanismes physiologiques potentiellement liés à l'échec, notamment un débalancement inflammatoire, une différenciation anormale et une augmentation de l'apoptose. Par la suite, 135 échantillons de cellules folliculaires provenant exclusivement de patientes pour qui la fécondation in vitro fut un échec (pas de grossesse) ont été utilisés. Des gènes liés à différentes causes d'échec potentielles ont été analysés en qRT-PCR, avant de réaliser une analyse de regroupement hiérarchique (clustering). La population de patientes non enceintes fut divisée en trois groupes possédant chacun un modèle d'expression génique particulier lié à une cause d'échec potentielle. Nous avons ainsi pu voir qu'il était possible de distinguer différentes causes d'échec ou différentes réponses folliculaires chez les patientes dont le cycle a échoué. Nous avons finalement utilisé un modèle in vitro de cellules de la granulosa humaine (lignée cellulaire KGN) afin d'étudier la capacité des cellules de la granulosa de répondre, à elles seules, à différents stimuli inflammatoires. Cette étude nous a permis de voir, via l'expression de gènes d'inflammation, que les cellules de la granulosa peuvent créer une réponse inflammatoire et que celle-ci est différente selon le type de stimulus. Globalement, les résultats de ces études améliorent les connaissances et la compréhension de l'échec en contexte de fécondation in vitro. Ils mettent également en lumière le potentiel de l'expression des gènes comme outil de diagnostic de la réponse folliculaire. Finalement, ils confirment également l'importance de l'inflammation et de son contrôle, particulièrement en contexte de procréation assistée. / Since the last few decades, couples tend to postpone parenthood to later in life. As a result, an increasing number of couples are facing infertility problems when it comes to building a family and have children. Consistently, the use of assisted reproductive technologies such as in vitro fertilization is also increasing. Despite all the progress that has been made since the introduction of in vitro fertilization in the 1980s, the success rate of this technique remains low, with a pregnancy rate around 30%. The patient's response to the stimulation treatment that precedes in vitro fertilization is extremely variable and difficult to predict. Moreover, when a cycle fails, most of the time there is no apparent reason. The hypothesis of this thesis is that there is a transcriptomic signature in follicular cells that reflects the ovarian response. Gene expression could be used to characterize the patient's response to the hormonal stimulation in order to adapt the next treatment accordingly and thus potentially improve the chances of success. Our work focuses on the gene expression in granulosa cells coming mainly from stimulated follicles in the context of in vitro fertilization or from an in vitro cell culture model. First, follicular cell samples from women undergoing in vitro fertilization treatment were obtained. We used a microarray to compare gene expression between patients that did not become pregnant following the in vitro fertilization cycle and those that did. We found that there is a different transcriptomic signature in patients who failed to conceive following in vitro fertilization. In addition, the analysis of the differentially expressed genes and the related biological pathways gave us more information on the physiological mechanisms potentially related to IVF failure, such as inflammatory imbalance, abnormal differentiation and increased apoptosis. For the next study, 135 follicular cell samples coming exclusively from patients who failed to conceive following in vitro fertilization (no pregnancy) were used. Genes related to different potential failure causes were analyzed using qRT-PCR and a hierarchical clustering analysis was then performed. The population of non-pregnant patients was divided into three groups, each one having a specific gene expression pattern related to a potential failure cause. The results of this study showed that it is possible to distinguish different failure causes or different follicular responses in patients whose cycle had failed. We finally used an in vitro model of human granulosa cells (KGN cell line) to see if pure granulosa cells were able to respond to different inflammatory stimuli. This preliminary study showed, through the expression of inflammation-related genes, that granulosa cells alone are able to create an inflammatory response and that this response differs depending on the type of stimulus. Taken together, the results of these studies improve the current knowledge and our understanding of in vitro fertilization failure. They also highlight the potential of gene expression to serve as a follicular response diagnostic tool. Finally, they also confirm the importance of inflammation and its control, particularly in the context of assisted reproductive technologies.
22

Generation of cumate/coumermycin inducible HEK293-SF AAV packaging cell lines

Jalsic, Lovro 18 September 2023 (has links)
Thèse ou mémoire avec insertion d’articles / La complexité et le coût de production à grande échelle des rAAV présentent un sérieux obstacle à la commercialisation des thérapies géniques. Des améliorations dans la fabrication des vecteurs rAAV sont réalisables à l'aide de lignées cellulaires d'empaquetage ou productrices, qui, dans le cas des rAAV, sont difficiles à générer en raison de la toxicité des protéines AAV Rep et des gènes auxiliaires d'adénovirus nécessaires à la production. Le gène AAV REP code pour quatre protéines Rep (Rep -78, -68, -52, -40) qui ont de multiples fonctions et rôles qui se chevauchent dans la production d'AAV. Les gènes auxiliaires adénoviraux utilisés dans la production de rAAV sont E2A, E4 et VA et jouent des rôles uniques dans le cycle de vie de l'AAV. Pour générer une lignée cellulaire d'empaquetage de AAV, tous ces composants doivent être intégrés de manière stable dans le génome des cellules. L'expression doit être étroitement régulée en raison de la cytotoxicité et lorsque l'expression est induite, les niveaux doivent être adéquats pour soutenir la production de rAAV. Une telle lignée cellulaire d'empaquetage serait un point de départ pour créer une lignée cellulaire productrice pour la production d'un sérotype spécifique d'AAV et d'un gène thérapeutique spécifique en intégrant un gène CAP d'intérêt et une séquence thérapeutique flanquée d'ITR. Le travail présenté dans cette thèse décrit le processus de génération et de caractérisation des lignées cellulaires d'empaquetage 293SF-CymR/λR-GyrB AAV exprimant les protéines Rep et les conceptions et tentatives de création d'une lignée cellulaire d'empaquetage Rep/Helper. Nous avons identifié et intégré avec succès une combinaison de deux protéines Rep (Rep68 et Rep40) exprimées à partir de deux promoteurs inductibles par le cumate et la coumermycine. Les lignées cellulaires créées ont démontré leur capacité à produire des titres à des niveaux comparables aux productions par transfection transitoire avec les lignées cellulaires parentales et se sont avérées stables en culture sans sélection. Nous décrivons également notre conception et nos travaux de recherche sur la faisabilité pour générer des lignées cellulaires d'emballage Rep/Helper où les séquences codant pour les protéines E4orf6 et E2A DBP sont également exprimées à partir de promoteurs inductibles par le cumate et la coumermycine. / The complexity and cost of large-scale rAAV production present a serious obstacle in commercialization of rAAV gene therapies. Improvements in rAAV vector manufacturing are achievable using packaging or producer cell lines, which in case of rAAVs are difficult to generate due to the toxicity of AAV Rep proteins and adenovirus helper genes required for production. The AAV REP gene encodes four Rep proteins (Rep -78, -68, -52, -40) which have multiple overlapping functions and roles in AAV production. The adenoviral helper genes used in rAAV production are E2A, E4 and VA and serve unique roles in the AAV lifecycle. To generate an AAV packaging cell line all these components must be stably integrated into the genome of the cells. Expression must be tightly regulated due to cytotoxicity and when expression is induced, the levels must be adequate to support rAAV production. Such a packaging cell line would be a starting point to create a producer cell line for production of a specific serotype of AAV and specific therapeutic gene by integrating a CAP gene of interest and ITR flanked therapeutic sequence. The work presented in this thesis describes the process of generating and characterizing 293SF-CymR/λR-GyrB AAV packaging cell lines expressing the Rep proteins and the designs and attempts of creating a Rep/Helper packaging cell line. We successfully identified and integrated a combination of two Rep proteins (Rep68 and Rep40) expressed from two cumate and coumermycin inducible promoters. The created cell lines demonstrated ability to produce titers at levels comparable to transient transfection productions with the parental cell lines and were shown to be stable in culture without selection. We also describe our design and investigation into the feasibility of Rep/Helper packaging cell line generation where the E4orf6 and E2A DBP protein coding sequences are also expressed from cumate and coumermycin inducible promoters.
23

Vers une thérapie génique ex vivo de la dystrophie musculaire de Duchenne : approches lentivirale et intégrase PhiC31

Quenneville, Simon 13 April 2018 (has links)
La dystrophie musculaire de Duchenne est une maladie génétique liée au chromosome X qui atteint un garçon sur 3 500. Cette maladie est caractérisée par l'absence de dystrophine à la surface des fibres musculaires. Sans cette protéine, les fibres se brisent plus fréquemment et une faiblesse musculaire progressive apparait. Les patients décèdent généralement au début de la vingtaine. Il n'y a présentement aucun traitement pour cette pathologie. La greffe de cellules myogéniques est une thérapie possible, mais se heurte à un rejet par le système immunitaire du patient. Pour contourner ce problème, il est possible de développer une thérapie génique ex vivo, basée sur la greffe de cellules autologues modifiées génétiquement. Malheureusement, aucune technique efficace de modification génétique des cellules n'était disponible il y a quatre ans. Nous avons testé deux nouvelles techniques de modification génétique. Une première est non virale et la seconde utilise les lentivirus. La première consiste à transfecter un plasmide d'expression de la dystrophine par Nucléofection. Pour intégrer les séquences, un second plasmide, codant pour l'intégrase PhiC31, est aussi introduit dans les cellules. Cette technique nous a permis de stabiliser des plasmides allant de 7 kb à 21 kb, ce qui en fait les plus grosses séquences jamais stabilisées dans des cellules de culture primaire humaine. Cette expression a pu être détectée dans les fibres musculaires après une greffe. Nous avons aussi utilisé des lentivirus pour effectuer une modification génétique des cellules. Ce vecteur viral est très efficace pour introduire des cassettes d'expression pour des versions tronquées de la dystrophine. L'expression de cette dystrophine est détectable in vitro, mais aussi in vivo après la transplantation. De plus, une cassette servant à faire le saut d'exon thérapeutique a aussi été introduite dans des cellules myogéniques et a permis de faire exprimer une dystrophine presque complète par des cellules issues de patients DMD. Cette expression a aussi été détectée dans des modèles murins. Ces travaux constituent une preuve de principe de la faisabilité d'une thérapie génique ex vivo pour la DMD. Plusieurs améliorations restent à apporter, mais il semble que ces travaux laissent croire qu'un essai clinique sera réalisable. / Duchenne muscular dystrophy (DMD) is a severe X-linked muscle genetic illness that afflicts one boy per 3 500. Cell therapy is a possible cure for this illness that usually kills patients around age 25. Transplantation of the heterologus myogenic cells is, however, restricted by the immune rejection by the patient. Ex vivo gene therapy offers an evasion to this problem. Introduction of the therapeutic gene into the patient’s own myogenic precursor cells, followed by transplantation is the base of this therapeutic. Four years ago, no efficient procedure to stably modify myogenic cells was available. New gene introduction techniques were thus tested in the present thesis. The first one is a non-viral method. We used a new transfection technology (Nucleofection) to introduce plasmid DNA coding for dystrophin with success. To stabilize the expression, human myogenic cells were co-nucleofected with a PhiC31 expressing plasmid. This integrase was capable of stabilising expression plasmids ranging from 7 kb to 21 kb. This very large sequence was the largest plasmid ever stabilised into human primary cultured cells. The presence of full-length dystrophin protein was detected in vitro and confirmed in vivo, after the transplantation of the myogenic precursor. Another technique was used: the lentiviral vectors. These viral vectors were designed to deliver an expression cassette for a truncated version of the dystrophin gene. The viral vector was efficient at modifying the cells. The expression was shown in vitro and in vivo after the transplantation of the modified cells. The lentiviral vectors were also essayed to deliver a U7 exon skipping cassette into DMD cells. It was then possible to demonstrate that this introduction led to the expression of a quasi normal dystrophin protein in vitro. The expression was also shown in vivo after the transplantation into SCID mice model. A non-viral approach combining nucleofection and the PhiC31 integrase may eventually permit safe auto-transplantation of genetically modified cells. The utilisation of lentiviral vectors also provided evidences that an ex vivo gene therapy is possible for DMD. We believe these results are paving the way to an eventual clinical trial for ex vivo gene therapy.
24

Anémie de Fanconi : thérapie génique par les cellules souches hématopoïétiques

Habi, Ouassila 13 April 2018 (has links)
L'anémie de Fanconi (AF) est une pathologie génétique rare (1/350 000 naissances), transmise selon le mode récessif. Son tableau clinique regroupe de nombreuses malformations congénitales, une aplasie médullaire, une pancytopénie et une prédisposition accrue aux cancers. Au plan cellulaire, une mutation sur l'un des treize gènes Fanconi suffit à induire une instabilité chromosomique et une hypersensibilité aux agents pontant l'ADN. La perte de fonction des protéines Fanconi est probablement responsable du défaut d'autorenouvellement des cellules souches hématopoïétiques (CSH) et de l'état pro-apoptotique des progéniteurs médullaires. Les principaux traitements ont une très faible efficacité et induisent de dangereuses complications (toxicité, leucémies). La thérapie génique qui consiste à introduire ex vivo dans les CSH, une copie fonctionnelle du gène Fanconi altéré, apparaît ici comme le traitement alternatif le plus prometteur. Les premiers travaux effectués dans le laboratoire et confirmés pas d'autres, ont montré que la correction génique ex vivo est néfaste pour les CSH Fanconi. Une nouvelle approche thérapeutique a été mise en place, consistant à introduire la copie fonctionnelle du gène altéré directement in vivo, par injection intra-fémorale (IIF). Cette technique novatrice permet de délivrer le gène dans le milieu natif des CSH, leur évitant le stress induit par la culture. Après l'IIF de virions porteurs du gène EGFP (enhanced green fluorescent protein), des analyses sanguines mensuelles montrent une augmentation régulière de la fluorescence, confirmant l'efficacité technique du transfert génique in vivo. L'étape suivante consistait en l'injection du gène correcteur FancC, en fusion avec le marqueur EGFP (FancC-EGFP), dans des souris FancC-/-, FancA-/- et sauvages. L'expression sanguine de la protéine FANCC-EGFP confirme la transduction de cellules médullaires. L'efficacité de correction est évaluée lors de tests de survie des souris aux injections intra-péritonéales d'un agent pontant l'ADN : la mitomycine-C (MMC), sur une période de quinze semaines. Ce traitement vise à évaluer l'effet correcteur de la transduction et la fonctionnalité de la protéine transgénique, seules les cellules corrigées seront en mesure de restaurer l'intégrité de leur ADN et de proliférer. La nature des cellules corrigées a été analysée au cours de transplantations successives. Les résultats démontrent que les CSH FancC-/- recouvrent, après correction in vivo, par le transgène FancC-EGFP, une fonctionnalité semblable à celle des sauvages. Les résultats préliminaires obtenus dans le modèle murin aplasique confirment l'efficacité de la correction génique et sont particulièrement encourageants puisqu'ils permettent d'envisager l'IIF comme une nouvelle approche thérapeutique pour le traitement de l'AF.
25

Correction du gène de la dystrophine avec les nucléases à doigts de zinc

Iyombe, Jean-Paul 19 April 2018 (has links)
La thérapie génique sans transfert de gène utilisant les endonucléases de restriction spécifiques est une des approches thérapeutiques qui visent à la mise au point d’un traitement curatif de la dystrophie musculaire de Duchenne (DMD). Afin de corriger le gène de la dystrophine avec les nucléases à doigt de zinc (ZFNs) en ciblant l’exon 50, nous avons produit les protéines ZFNs dans les bactéries et les avons purifiées. Les résultats obtenus après les essais in vitro montrent que les ZFNs produites reconnaissent d’une manière spécifique la séquence cible située au niveau de l’exon 50 du gène DYS et peuvent y générer d’une manière précise les coupures double-brin. Ils montrent également que les protéines ZFNs produites peuvent être transfectées, avec ou sans agent de transfection, dans les myoblastes des patients dystrophiques Duchenne en culture. / Gene therapy without gene transfer using specific restriction endonucleases is a therapeutic approaches aimed at the development of a cure for Duchenne muscular dystrophy (DMD). To correct the dystrophin gene with zinc finger nucleases (ZFNs) targeting exon 50of DYS gene, we produced ZFNs proteins in bacteria and purified them. The results obtained after in vitro assays show that ZFNs produced specifically recognize a target sequence located in exon 50 of the gene DYS and can be generated in a precise manner the double strand breaks. They also show that ZFNs produced proteins can be transduced with or without agent transduction, in cultured myoblasts of patients’ Duchenne dystrophy.
26

Développement d'une thérapie génique basée sur l'utilisation d'oligonucléotides antisens dans la dystrophie myotonique de type 1

Ait-Benichou, Siham 23 October 2023 (has links)
Titre de l'écran-titre (visionné le 25 juillet 2023) / La dystrophie myotonique de type 1 (DM1) est la plus fréquente des dystrophies musculaires chez l'adulte avec une prévalence de 1/8,000. Il s'agit d'une maladie multisystémique qui touche non seulement le muscle, mais aussi de nombreux organes et systèmes comme le cœur, le cerveau, les poumons, les yeux, les systèmes endocrinien et digestif. Une particularité de cette maladie est l'existence de la forme congénitale sévère responsable de 20 % de décès. La DM1 est causée par une expansion d'un triplet CTG dans la région 3' non codante du gène DMPK et que les ARNs mutés s'accumulent dans les noyaux formant des foci nucléaires. Ces foci séquestrent un facteur d'épissage de la famille des protéines muscle blind (MBNL) et perturbent la fonction de CUGBP-Elav-like (CELF), conduisant à une dérégulation de l'épissage alternatif et à des symptômes cliniques. La DM1 est une maladie qui affecte la qualité de vie, conduit à l'invalidité et réduit l'espérance de vie des sujets atteints, et actuellement il n'existe aucun traitement curatif. Notre hypothèse stipule que la destruction des ARNm DMPK mutés par l'utilisation des oligonucléotides antisens (ASOs) empêchera la fixation du MBNL, et améliorera ainsi le phénotype DM1 dans des modèles in vitro et in vivo. La première partie de ma thèse consiste à développer un modèle cellulaire de la DM1. Nous avons d'abord élaboré une procédure standardisée pour dériver les cellules souches humaines pluripotentes induites (hiPSCs) à partir de lignées cellulaires lymphoblastiques (LCL) en utilisant la méthode Sendeï. Nous avons généré des hiPSCs d'un homme atteint de la forme adulte de la DM1 avec 200 répétitions CTG. Les hiPSCs obtenues conservent la mutation génétique de la DM1, présentent un caryotype normal, expriment les marqueurs de pluripotence et sont capables de se différencier en trois couches germinales. Par la suite, nous avons développé un modèle de cellules neuronales humaines de patients DM1 ayant 1300 CTG pour vérifier l'efficacité des ASOs. Les cellules neuronales récapitulent les principaux phénotypes moléculaires de la DM1 par la présence de foci nucléaires qui se co-localisent avec les protéines MBNL1 et MBNL2 et l'existence des défauts d'épissage alternatif. La deuxième partie est consacrée à améliorer l'efficacité des ASOs pour le traitement des manifestations musculaires, cardiaques et cérébrales en étudiant l'ASO IONIS-486178 conjugué à un acide palmitique via un linker HA (C16-HA): le IONIS-877864. Nos résultats montrent que C16-HA améliore considérablement l'absorption des ASOs dans les muscles striés des souris DMSXL après administration systémique. L'injection sous-cutanée de IONIS-877864 entraîne une destruction de 92 % des ARNm de hDMPK mutés dans les muscles squelettiques et de 78 % dans le cœur. Toutefois, aucun effet n'a été observé dans le cerveau. La diminution des transcrits mutés de hDMPK dans les muscles squelettiques causée par IONIS-877864 a été associée à une amélioration significative de la force musculaire, confirmant ainsi la pertinence des ASOs conjugués à l'acide palmitique C16-HA pour le traitement aussi bien des tissus musculaires que cardiaques. Dans la troisième partie du travail, nous testons l'administration intrathécale des ASOs comme traitement des déficits cérébraux observés chez les patients DM1, étant donné qu'aucune chimie à ce jour n'a été capable de franchir la barrière hémato-encéphalique. IONIS-486178 a été évalué à la fois in vitro dans les cellules neurales DM1 et in vivo chez les souris DMSXL. L'ASO a détruit 80 % des foci nucléaires dans les cellules neurales. Cette destruction a permis la redistribution de MBNL1 et 2 et la correction de certaines anomalies d'épissage. L'injection intracérébroventriculaire de IONIS-486178 chez des souris DMSXL adultes a permis une diminution de jusqu'à 70 % des ARNm de hDMPK mutés dans les différentes régions du cerveau, un effet maintenu pendant douze semaines, et une biodistribution de l'ASO dans toutes les régions cérébrales. Enfin, l'analyse de l'activité globale des souris DMSXL par le test Open field montre qu'une seule injection intracérébroventriculaire des souris DMSXL néonatales par IONIS-486178 améliore significativement les anomalies comportementales 3 semaines après le traitement. Dans l'ensemble, cette thèse soutient la faisabilité d'un traitement par injections systémiques d'ASO pour les manifestations musculaires et cardiaques, et par administration intrathécale pour le traitement des déficits cérébraux chez les patients DM1. / Myotonic dystrophy type 1 (DM1) is the most common muscular dystrophy in adults with a prevalence of 1/8,000. It is a multisystem disease that affects not only the muscle, but also many organs and systems such as the heart, brain, lungs, eyes, endocrine and digestive systems. A particularity of this disease is the existence of the severe congenital form responsible for 20 % of deaths. DM1 is caused by an expansion of a CTG triplet in the 3' non-coding region of the DMPK gene and the mutated RNAs accumulate in the nuclei forming nuclear foci. These foci sequester a splicing factor of the muscle blind protein family (MBNL) and disrupt CUGBP-Elav-like (CELF) function, leading to deregulation of alternative splicing and clinical symptoms. DM1 is a disease that affects quality of life, leads to disability, and reduces life expectancy of affected individuals and currently there is no curative treatment. Our hypothesis states that the destruction of mutated DMPK mRNAs using antisense oligonucleotides (ASOs) will prevent MBNL binding, and thus improve the DM1 phenotype in in vitro and in vivo models. The first part of my thesis consists in developing a cellular model of DM1. We first developed a standardized procedure to derive human induced pluripotent stem cells (hiPSCs) from lymphoblastic cell lines (LCL) using the Sendeï method. We generated hiPSCs from a man affected by an adult form of DM1 with 200 CTG repeats. The resulting hiPSCs retained the DM1 genetic mutation, had a normal karyotype, expressed pluripotency markers and were able to differentiate into three germ layers. Subsequently, we developed a human neuronal cell model of DM1 patients with 1300 CTG to verify the efficacy of ASOs. The neuronal cells recapitulate the main molecular phenotypes of DM1 by the presence of nuclear foci that co-localize with MBNL1 and MBNL2 proteins and the existence of alternative splicing defects. The second part is devoted to improving the potency of ASOs for the treatment of muscle, heart and brain events by studying the IONIS-486178 ASO conjugated to a palmitic acid (C16) via an HA linker (the IONIS-877864). Our results show that C16-HA significantly enhances ASO uptake in striated muscles of DMSXL mice after systemic administration. Subcutaneous injection of IONIS-877864 results in 92 % destruction of mutant hDMPK mRNAs in skeletal muscle and 78 % in heart. However, no effect was observed in the brain. The decrease in mutant hDMPK transcripts in skeletal muscles caused by IONIS-877864 was associated with a significant improvement in muscle strength, thus confirming the suitability of C16-HA palmitic acid-conjugated ASOs for the treatment of both muscle and cardiac tissues. In the third part of the work, we test intrathecal administration of ASOs as a treatment for brain deficits observed in DM1 patients, as no chemistry to date has been able to cross the blood-brain barrier. IONIS-486178 was evaluated both in vitro in DM1 neuronal cells and in vivo in DMSXL mice. ASO destroyed 80 % of nuclear foci in neural cells. This destruction allowed the redistribution of MBNL1 and 2, and the correction of some splicing defects. Intracerebroventricular injection of the IONIS-486178 in DMSXL mice adult resulted in a decrease of up to 70 % in hDMPK mutated mRNA levels in different brain regions, an effect maintained for twelve weeks, and biodistribution of ASO in all brain regions. Finally, analysis of the global activity of DMSXL mice by the Open field test shows that a single intracerebroventricular injection of neonatal DMSXL mice with IONIS-486178 significantly improves behavioral abnormalities 3 weeks after treatment. Overall, this thesis supports the feasibility of treatment with systemic injections of ASO for muscle and cardiac manifestations, and intrathecal administration for the treatment of brain deficits in DM1 patients.
27

Expression patterns of Acid-Sensing Ion channels in primary sensory neurons

Papalampropoulou-Tsiridou, Melina 13 December 2023 (has links)
Les canaux ioniques de détection d'acide (ASIC) font partie de la famille des canaux ioniques degenerin-épithéliaux Na⁺ (DEG-ENaC), dont les principaux ligands connus sont les protons. Les canaux ASIC sont préférentiellement perméables au sodium (Na⁺) et, dans une moindre mesure, à d'autres cations, tels que le potassium (K⁺), le lithium (Li⁺) et le proton (H⁺). Les sous-unités ASIC peuvent être combinées pour donner des canaux homotrimaires ou hétérotrimaires avec différents seuils d'activation activation par l'acidite, ce qui conduit à une sensibilité distincte au pH des canaux ASIC en fonction de leur composition, ce qui fait d'eux des détecteurs de pH polyvalents. Quatre gènes (Asic1-4) exprimés dans tout le système nerveux, codant pour au moins 6 sous-unités (ASIC1a, ASIC1b, ASIC2a, ASIC2b, ASIC3 et ASIC4) par épissage alternatif, ont été découverts chez les rongeurs et les humains. Plus précisément, au niveau des ganglions rachidiens du système nerveux périphérique, nous avons signalé que les ASIC1a, ASIC1b, ASIC2a, ASIC2b et ASIC3 jouent un rôle important dans plusieurs fonctions dont la nociception. Même si des études antérieures ont exploré l'implication de ces canaux dans plusieurs fonctions somatosensorielles, une analyse détaillée de leur mode d'expression dans des populations distinctes de neurones sensoriels primaires n'a pas été réalisée à ce jour en raison de la disponibilité limitée d'anticorps spécifiques commerciaux. La première étude, présentée au chapitre 1, visait à révéler le profil d'expression complet des cinq sous-unités ASIC dans trois populations différentes de neurones sensoriels primaires. Une approche d'hybridation in situ (RNAscope) a été utilisée pour cibler les sous-unités ASIC, combinée à l'immunohistochimie pour révéler des populations spécifiques. Plus précisément, je me suis concentrée sur deux types principaux de nocicepteurs ciblant les nocicepteurs non peptidergiques non myélinisés expriment le récepteur à l'isolectine B4 (IB4), et les nocicepteurs peptidergiques non myélinisés exprimant le peptide lié au gène de la calcitonine (CGRP). De plus, j'ai ciblé les neurones multimodaux myélinisés en utilisant le neurofilament 200 (NF200). Compte tenu du rôle des ASIC dans la nociception et de leur implication dans la douleur neuropathique, j'ai également étudié comment la lésion des nerfs périphériques (induite par le menottage du nerf sciatique) affecte l'expression de chaque sous-unité dans différents segments des ganglions de la racine dorsale au sein des deux populations nociceptives. Mes résultats ont mis en évidence un profil d'expression complexe des ASIC dans des conditions naïves en fonction de la population étudiée, et une régulation différentielle des sous-unités ASIC spécifique à la région et au type de cellule après l'induction d'une lésion du nerf périphérique. La deuxième étude consiste en une investigation détaillée du profil d'expression des sous-unités ASIC1, ASIC2 et ASIC3 dans les ganglion rachidien humain. Plus spécifiquement, j'ai mené plusieurs expériences sur la co-expression des ASIC dans les neurones sensoriels primaires, en plus de l'exploration de leur profil d'expression dans les nocicepteurs peptidergiques et non peptidergiques. Cette étude, en conjonction avec mes travaux précédents, a mis en évidence des divergences et des similitudes entre les espèces qui devraient être prises en considération au cours du processus translationnel de cibles analgésiques précliniques jusqu'en traitements cliniques efficaces. / Acid-Sensing Ion Channels (ASICs) are members of the degenerin-epithelial Na⁺ channel (DEG-ENaC) family of ion channels with protons being their main known ligands. ASIC channels are preferentially permeable to sodium (Na⁺), and to a lesser extent, other cations, such as potassium (K⁺), lithium (Li⁺), and proton (H⁺). ASIC subunits can be combined giving homotrimeric or heterotrimeric channels with various acidity activation threshold, leading to distinct pH sensitivity of ASIC channels based on their composition, which makes them versatile pH sensors. Four genes (Asic1-4) expressed throughout the nervous system, encode at least 6 subunits (ASIC1a, ASIC1b, ASIC2a, ASIC2b, ASIC3 and ASIC4) through alternative splicing, and have been discovered in rodents and humans, among other species. More specifically, in the dorsal root ganglia (DRG) of the peripheral nervous system (PNS) of rodents, ASIC1a, ASIC1b, ASIC2a, ASIC2b, and ASIC3 have been reported, playing an important role in several functions including nociception. Even though previous studies have explored the channels' involvement in several somatosensory functions, a detailed analysis of their expression pattern in distinct populations of primary sensory neurons has not been conducted up to date due to the limited commercial availability of specific antibodies. The first study presented in Chapter 1, aimed to reveal the comprehensive expression pattern of the five ASIC subunits in three different populations of primary sensory neurons. An in situ hybridization approach (RNAscope) was used to target the ASIC subunits, combined with immunohistochemistry to reveal specific populations. Namely, I focused on two main types of nociceptors targeting non-myelinated non-peptidergic nociceptors with Isolectin B4 (IB4), and peptidergic non-myelinated nociceptors with calcitonin gene-related peptide (CGRP). Moreover, I targeted myelinated multimodal neurons using neurofilament 200 (NF200). Considering the role of ASICs in nociception and their involvement in neuropathic pain, I also investigated how peripheral nerve injury (induced by placing a tight cuff around the sciatic nerve) affects the expression of each subunits in different DRG segments within the two nociceptive populations. My results uncovered a complex expression pattern of ASICs in naïve conditions depending on the population under investigation, and a regional and cell type specific differential regulation of ASIC subunits after induction of peripheral nerve injury. The second study consists of a detailed investigation of the expression pattern of ASIC1, ASIC2 and ASIC3 subunits in human DRG. More specifically I conducted several experiments investigating the co-expression of ASICs in primary sensory neurons in addition to exploring their expression pattern in peptidergic and non-peptidergic nociceptors. This study, in conjunction with my previous work, uncovered species divergence and similarities that should be taken under consideration during the translational process of successful preclinical analgesic targets to effective clinical treatments.
28

Développement d'oligonucléotides antisens pour le traitement de la dystrophie myotonique de Steinert

Jauvin, Dominic 23 April 2018 (has links)
Le développement d’une thérapie génique pour la dystrophie myotonique de type 1 (DM1) implique l’utilisation d’un système de livraison musculaire efficace. L’évaluation d’oligonucléotides antisens (ASO) en conformation gapmer nous a permis d’identifier deux ASO, un de chimie 2’-O-méthoxyéthyle et l’autre avec des acides nucléiques bicycliques avec éthyle contraint, dont l’efficacité dans les modèles cellulaires et de souris de la DM1 était suffisante pour réduire significativement l’ARNm étendu de la DMPK. Il fut possible d’observer une réduction des foci nucléaires menant à une redistribution d’un régulateur d’épissage séquestré au noyau, ainsi corrigeant des erreurs d’épissage caractéristiques de la DM1. Plus particulièrement chez la souris DMSXL, l’injection systémique bihebdomadaire a mené à une maturation des fibres musculaires ainsi qu’au rétablissement de la force musculaire des sujets. Ce projet est la preuve de principe in vitro et in vivo qu’une thérapie génique par les ASO est concevable pour le traitement de la DM1. / A gene therapy for myotonic dystrophy type 1 (DM1) implies an effective muscular delivery method. The evaluation of antisenses oligonucleotides (ASO) enabled us to identify two gapmer ASOs, one with a 2’-O-methoxyethyl chemisty and the other with a constrained ethyl bicyclic nucleic acid, whose efficacy in DM1 cell and mouse models was sufficient to significantly reduced expanded hDMPK mRNA levels. Furthermore, reduction in DMPK induced nuclear foci resulted in redistribution of a sequestered alternative splicing regulator, leading to correction of mis-splicing events characteristic of DM1. In DMSXL mouse, biweekly systemic injection of ASOs induced muscle fiber maturation and a gain in forelimb strength. This project is the in vitro and in vivo proof of the principle that an ASO gene therapy is conceivable for treatment of DM1.
29

Correction du gène de la dystrophine avec la méthode CRISPR induced deletion (CinDel)

Iyombe, Jean-Paul 28 March 2024 (has links)
La dystrophie musculaire est une maladie génétique monogénique récessive liée au chromosome X. Elle atteint 1 garçon sur 3500 naissances mâles. Le garçon atteint de la maladie présente des troubles de la locomotion à l’âge de 3-4 ans et la perd vers l’âge de 11 ans. La mort survient entre 18-30 ans suite à des complications cardio-pulmonaires. Il n’existe pas à ce jour un traitement curatif efficace contre cette grave maladie. Nous avons développé une approche de thérapie génique appelée CRISPR-induced deletion (CinDel) pour corriger le gène DMD muté. Elle utilise deux ARNg qui ciblent les exons précédant et suivant la délétion responsable du décalage du cadre de lecture. La reconnaissance des sites ciblés par les deux ARNg permet le recrutement de la nucléase Cas9 qui génère des coupures double-brin. Les séquences exoniques et introniques situées entre les deux coupures sont ensuite délétées. Les restes des exons sont joints par la recombinaison non homologue (NHEJ) pour produire un exon hybride, rétablir le cadre de lecture et permettre la synthèse d’un edystrophine tronquée ayant une structure correcte des répétitions de type spectrine (Spectrin-Like Repeat: SLR) et des heptades. Cette approche CinDel a été utilisée dans le cadre de ce projet d’abord pour corriger le gène DMD muté dans les myoblastes d’un patient avec une délétion des exons 51-53. Les exons 50 et 54 ont été ciblés avec deux ARNg et la Spcas9 pour produire des coupures double-brin et déléter les séquences situées entre ces deux sites et produire par NHEJ un exon hybride 50-54. L’approche a également permis de corriger in vivo le gène DMD muté dans le modèle animal, la souris transgénique avec un gène DMD humain ayant une délétion de l’exon 52 (del52hDMD) en utilisant un vecteur viralAAV9 contenant le gène SpCas9 et deux ARNgs. Pour vérifier la localisation par rapport au sarcolemme de la dystrophine tronquée avec ou sans une structure correcte des SLR et des heptades, nous avons électroporé les muscles Tibialis anteriorde souris mdx/mdx avec des plasmides codant pour les gènes normal et tronqué de la dystrophine fusionnée avec le gène de l’EGFP. Les résultats de cette expérience montrent que les dystrophines tronquées et normale se localisent correctement sous le sarcolemme. En vue de réprimer efficacement le gène de la SpCas9 et éviter son expression prolongée qui peut être à la base de coupures aléatoires et inattendues (off-target effects) dans le génome, nous avons mis au point une méthode de répression appelée Hara-Kiri moléculaire. Elle utilise la méthode CinDel et consiste à cibler deux régions du gène de SpCas9 avec deux ARNg. Le recrutement de la nucléase permet à celle-ci de couper son propre gène (Hara-Kiri). La séquence située entre les deux sites de coupures est délétée. Par NHEJ, les restes du gène de SpCas9 sont joints en générant un codon stop TAA au point de jonction. Cette approche a permis de réprimer efficacement le gène de SpCas9 in vitro et in vivo / Duchenne Muscular Dystrophy (DMD) is an X-linked genetically recessive genetic disorder. It affects 1 boy out of 3500 male births. The boy with the disorder presents walking disorders at the age of 3-4 years and loses it around the age of 11. Death occurs around 18-30 years of age from cardiopulmonary complications. To date, there is no effective cure for this serious disease. We have developed a gene therapy approach called CRISPR-induced deletion (CinDel) to correct the mutated DMD gene. It uses two gRNAs that target the exons preceding and following the deletion responsible for the frame shift. The recognition of the target sites by the two gRNAs allows the recruitment of the Cas9 nuclease, which generates double-strand breaks. The exonic and intronic sequences located between the two cuts are then deleted and the remains of the exons are fused by Non-Homologous End Joining (NHEJ) to produce a hybrid exon and restore the reading frame and to allow the synthesis of the truncated dystrophin with correct SLR structure and heptads. The CinDel approach was used in this project to correct the mutated DMD gene in the myoblasts of a patient with a 51-53 deletion. Exons 50 and 54 were targeted by SpCas9 and two gRNAs and to produce double strand breaks, delete the sequences between the two cleavage sites and produce a hybrid exon 50-54 by NHEJ. This restored the normal reading frame and allowed the expression of truncated dystrophin in the patient's myotubes. The approach also made it possible to correct in vivo the mutated DMD gene in the animal model, the transgenic mouse with a human DMD gene having a deletion of exon 52 (del52hDMD) using an AAV9 viral vector containing the SpCas9 gene and two ARNgs. To verify the location with respect to the sarcolemma of truncated dystrophin with or without a correct SLR structure and heptads, we electroporated the Tibialis anterior muscles of mdx/mdx mice with the plasmids encoding the normal or the truncated dystrophin gene fused with the eGFP gene. The results of this experiment show that truncated and normal dystrophins were well localized under sarcolemma. In order to effectively repress the SpCas9 gene and avoid its prolonged expression that may be the basis of random and unexpected (off-target effects) cuts in the genome, we have developed a method of repression called molecular Hara-Kiri. It uses the CinDel method and consists of targeting two regions of the SpCas9 gene with two gRNAs. Recruiting nuclease allows it to cut its own gene (Hara-Kiri). The sequence between the two cleavage sites is deleted. The residues of the SpCas9 gene are then joined by NHEJ generating a TAA stop codon at the junction point. This approach effectively repressed the SpCas9 gene in vitro and in vivo.
30

Développement de thérapies pour les maladies métaboliques rares de l'enfant par correction génique in vivo

Rivest, Jean-François 14 March 2025 (has links)
La tyrosinémie héréditaire de type 1 (HT1) est une maladie génétique orpheline dont la prévalence est particulièrement élevée dans certaines régions du Québec (plus de 1/2000 naissances au Saguenay-Lac-Saint-Jean). La HT1 est causée par l'absence d'une copie fonctionnelle du gène *FAH* qui code pour la fumarylacétoacétate hydrolase, la dernière enzyme de la voie catabolique de la tyrosine. L'absence de cette enzyme résulte en l'accumulation de métabolites toxiques qui entraînent un syndrome hépato-rénal grave et mènent généralement à l'hépatocarcinome. La prise de nitisinone (NTBC), un inhibiteur de l'enzyme HPD située en amont de l'enzyme FAH dans cette voie catabolique, permet aux patients HT1 de survivre jusqu'à l'âge adulte, mais ils demeurent à fort risque d'hépatocarcinome. Nous présentons deux stratégies d'édition génique *in vivo* faisant appel à une nucléase CRISPR-Cas9 pour corriger au foie le phénotype de souris $Fah\it^{Δexon5}$, un modèle de HT1. Nous montrons d'abord que la réorientation métabolique engendrée par l'inactivation du gène *Hpd* murin par une nucléase Cas9 de *Streptococcus thermophilus* permet de corriger rapidement et à long terme le phénotype de HT1. Nous présentons également une stratégie de correction du gène *Fah* par réparation par homologie (HDR) qui permettrait de corriger la majorité des mutations connues pour causer la HT1 chez l'humain (95/98) en plus de conserver les éléments natifs de régulation du gène. Nos données préliminaires indiquent que cette approche de correction génique permet de corriger le phénotype des souris $Fah\it^{Δexon5}$ et permet la survie des animaux traités à la suite du retrait du NTBC de leur alimentation. Finalement, nous présentons des preuves de concept pour de nouvelles approches thérapeutiques qui seront explorées lors de travaux subséquents. Les approches présentées ici pourront être utilisées pour le développement de traitements novateurs pour d'autres maladies orphelines. / Hereditary tyrosinemia type 1 (HT1) is an inherited orphan disease with an especially high prevalence in some regions of Quebec (more than 1/2000 live births in Saguenay-Lac-Saint-Jean). HT1 is caused by the absence of a functional copy of the *FAH* gene which codes for fumarylacetoacetate hydrolase, the last enzyme involved in the tyrosine catabolic pathway. The absence of this enzyme results in the build-up of toxic metabolites that cause severe hepato-renal syndrome and generally leads to hepatocarcinoma. Treatment with nitisinone (NTBC), an inhibitor of the HPD enzyme located upstream of FAH in the catabolic pathway, allows patients to survive to adulthood where they remain at high risk of developing cancer. We present two *in vivo* genome editing approaches based on a CRISPR-Cas9 nuclease to correct the liver phenotype of $Fah\it^{Δexon5}$ mice, a model of HT1. We first show that metabolic rewiring following the knock-out of the murine *Hpd* gene by a Cas9 nuclease from *Streptococcus thermophilus* allows for the rapid and long-term recovery of the HT1 phenotype. We also present a strategy for correcting the *Fah* gene based on homology-directed repair that would allow for the correction of most mutations known to cause HT1 in humans (95/98) while conserving native gene regulation elements. Our preliminary data indicates that this gene correction approach rescues the phenotype from $Fah\it^{Δexon5}$ mice and allows for the survival of the treated animals following NTBC withdrawal. Finally, we present proof of concept for new therapeutic approaches which will be explored in subsequent work. The therapeutic approaches presented here may allow for the development of novel treatments for other orphan diseases.

Page generated in 0.036 seconds