Return to search

Surfaces de Veech arithmétiques en genre deux: disques de Teichmüller, groupes de Veech et constantes de Siegel-Veech

Sur les espaces de modules de différentielles abéliennes existe une action naturelle de SL(2,R). Ses orbites, appelées disques de Teichmüller, se projettent dans les espaces de modules de surfaces de Riemann sur des géodésiques complexes. En tirant en arrière la forme dz du tore standard par des revêtements ramifiés au-dessus d'un seul point, on obtient les surfaces à petits carreaux, points entiers des espaces de modules de différentielles abéliennes. Nous étudions en détail les disques de Teichmüller des points entiers de l'espace des modules des différentielles abéliennes en genre deux avec un zéro double: nombre de disques de Teichmüller pour chaque nombre de carreaux, et leur géométrie; propriétés algébriques des stabilisateurs (sous-groupes de SL(2,Z) qui ne sont pas de congruence); comportement asymptotique des constantes de Siegel-Veech (coefficients des taux de croissance quadratiques des géodésiques fermées) lorsque le nombre de carreaux tend vers l'infini.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00008722
Date10 December 2004
CreatorsLelièvre, Samuel
PublisherUniversité Rennes 1
Source SetsCCSD theses-EN-ligne, France
LanguageFrench
Detected LanguageFrench
TypePhD thesis

Page generated in 0.3355 seconds