On étudie deux modèles statistiques: le modèle de régression à pas aléatoire et le modèle de bruit blanc gaussien. Dans ces modèles, le but est d'estimer en norme sup une fonction f inconnue, à partir des observations, en supposant que f appartient à une classe de Holder. Dans le modèle de régression, pour l'estimation d'une fonction unidimensionnelle, on obtient la constante exacte et un estimateur asymptotiquement exact. Dans le modèle de bruit blanc, on s'intéresse à l'estimation sur deux classes de fonctions multidimensionnelles anisotropes dont une est une classe additive. Pour ces deux classes, on détermine la constante exacte et un estimateur asymptotiquement exact et on met en évidence leur lien avec l'"optimal recovery". La dernière partie donne des résultats d'asymptotique exacte dans un cadre adaptatif dans le modèle de bruit blanc. On détermine la constante exacte adaptative et un estimateur asymptotiquement exact adaptatif pour l'estimation sur des classes anisotropes.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00008028 |
Date | 23 November 2004 |
Creators | Bertin, Karine |
Publisher | Université Pierre et Marie Curie - Paris VI |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0016 seconds