Ce travail de thèse porte sur différentes caractérisations des modèles multivariés de stables-Tweedie multiples dans le cadre des familles exponentielles naturelles sous la propriété de "steepness". Ces modèles parus en 2014 dans la littérature ont été d’abord introduits et décrits sous une forme restreinte des stables-Tweedie normaux avant les extensions aux cas multiples. Ils sont composés d’un mélange d’une loi unidimensionnelle stable-Tweedie de variable réelle positive fixée, et des lois stables-Tweedie de variables réelles indépendantes conditionnées par la première fixée, de même variance égale à la valeur de la variable fixée. Les modèles stables-Tweedie normaux correspondants sont ceux du mélange d’une loi unidimensionnelle stable-Tweedie positive fixé et les autres toutes gaussiennes indépendantes. A travers des cas particuliers tels que normal, Poisson, gamma, inverse gaussienne, les modèles stables-Tweedie multiples sont très fréquents dans les études de statistique et probabilités appliquées. D’abord, nous avons caractérisé les modèles stables-Tweedie normaux à travers leurs fonctions variances ou matrices de covariance exprimées en fonction de leurs vecteurs moyens. La nature des polynômes associés à ces modèles est déduite selon les valeurs de la puissance variance à l’aide des propriétés de quasi orthogonalité, des systèmes de Lévy-Sheffer, et des relations de récurrence polynomiale. Ensuite, ces premiers résultats nous ont permis de caractériser à l’aide de la fonction variance la plus grande classe des stables-Tweedie multiples. Ce qui a conduit à une nouvelle classification laquelle rend la famille beaucoup plus compréhensible. Enfin, une extension de caractérisation des stables-Tweedie normaux par fonction variance généralisée ou déterminant de la fonction variance a été établie via leur propriété d’indéfinie divisibilité et en passant par les équations de Monge-Ampère correspondantes. Exprimées sous la forme de produit des composantes du vecteur moyen aux puissances multiples, la caractérisationde tous les modèles multivariés stables-Tweedie multiples par fonction variance généralisée reste un problème ouvert. / In the framework of natural exponential families, this thesis proposes differents characterizations of multivariate multiple stables-Tweedie under "steepness" property. These models appeared in 2014 in the literature were first introduced and described in a restricted form of the normal stables-Tweedie models before extensions to multiple cases. They are composed by a fixed univariate stable-Tweedie variable having a positive domain, and the remaining random variables given the fixed one are reals independent stables-Tweedie variables, possibly different, with the same dispersion parameter equal to the fixed component. The corresponding normal stables-Tweedie models have a fixed univariate stable-Tweedie and all the others are reals Gaussian variables. Through special cases such that normal, Poisson, gamma, inverse Gaussian, multiple stables-Tweedie models are very common in applied probability and statistical studies. We first characterized the normal stable-Tweedie through their variances function or covariance matrices expressed in terms of their means vector. According to the power variance parameter values, the nature of polynomials associated with these models is deduced with the properties of the quasi orthogonal, Levy-Sheffer systems, and polynomial recurrence relations. Then, these results allowed us to characterize by function variance the largest class of multiple stables-Tweedie. Which led to a new classification, which makes more understandable the family. Finally, a extension characterization of normal stable-Tweedie by generalized variance function or determinant of variance function have been established via their infinite divisibility property and through the corresponding Monge-Ampere equations. Expressed as product of the components of the mean vector with multiple powers parameters reals, the characterization of all multivariate multiple stable- Tweedie models by generalized variance function remains an open problem.
Identifer | oai:union.ndltd.org:theses.fr/2016BESA2071 |
Date | 17 June 2016 |
Creators | Moypemna sembona, Cyrille clovis |
Contributors | Besançon, Kokonendji, Célestin Clotaire |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0026 seconds