Spelling suggestions: "subject:"infinite invisibility"" "subject:"lnfinite invisibility""
1 |
Hume on the Doctrine of Infinite Divisibility: A Matter of Clarity and AbsurdityUnderkuffler, Wilson H. 15 April 2018 (has links)
I provide an interpretation of Hume’s argument in Treatise 1.2 Of the Ideas of Space and Time that finite extensions are only finitely divisible (hereafter Hume’s Finite Divisibility Argument). My most general claim is that Hume intends his Finite Divisibility Argument to be a demonstration in the Early Modern sense as involving the comparison and linking of ideas based upon their intrinsic contents. It is a demonstration of relations among ideas, meant to reveal the meaningfulness or absurdity of a given supposition, and to distinguish possible states of affairs from impossible ones. It is not an argument ending in an inference to an actual matter of fact. Taking the demonstrative nature of his Finite Divisibility Argument fully into account radically alters the way we understand it.
Supported by Hume’s own account of demonstration, and reinforced by relevant Early Modern texts, I follow to its logical consequences, the simple premise that the Finite Divisibility Argument is intended to be a demonstration. Clear, abstract ideas in Early Modern demonstrations represent possible objects. By contrast, suppositions that are demonstrated to be contradictory have no clear ideas annexed to them and therefore cannot represent possible objects—their ‘objects,’ instead, are “impossible and contradictory.” Employing his Conceivability Principle, Hume argues that there is a clear idea of a finite extension containing a finite number of parts and therefore, finitely divisible extensions are possible. In contrast, the supposition of an infinitely divisible finite extension is “absurd” and “contradictory” and stands for no clear idea. Consequently, Hume deems this supposition “impossible and contradictory,” that is, without meaning and therefore, descriptive of no possible object. This interpretation allays concerns found in the recent literature and helps us better understand what drives Hume’s otherwise perplexing argument in the often neglected or belittled T 1.2.
|
2 |
Análise lógica da proposição e divisibilidade infinita de extensões no Tractatus de Wittgenstein / Logical analysis of the proposition and infinite divisibility of extensions in Wittgenstein's TractatusOliveira, Paulo Júnio de 10 November 2015 (has links)
Submitted by Luciana Ferreira (lucgeral@gmail.com) on 2016-03-17T14:31:15Z
No. of bitstreams: 2
Dissertação - Paulo Júnio de Oliveira - 2015.pdf: 1566271 bytes, checksum: a8c1caa1354936dd420024e5bc704cb9 (MD5)
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) / Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2016-03-17T14:33:55Z (GMT) No. of bitstreams: 2
Dissertação - Paulo Júnio de Oliveira - 2015.pdf: 1566271 bytes, checksum: a8c1caa1354936dd420024e5bc704cb9 (MD5)
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) / Made available in DSpace on 2016-03-17T14:33:55Z (GMT). No. of bitstreams: 2
Dissertação - Paulo Júnio de Oliveira - 2015.pdf: 1566271 bytes, checksum: a8c1caa1354936dd420024e5bc704cb9 (MD5)
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5)
Previous issue date: 2015-11-10 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / The aim of this dissertation is to discuss the problem of infinite divisibility of
bodies, a problem which was already discussed in the classic period by Aristotle
and his analysis of Zeno’s paradoxes. Our working hypothesis is that in the
Tractatus-Logico-Philosophicus Wittgenstein has offered a reformulation of this
very problem when he discusses the process of analysis of propositions. One of the
central thesis in the Tractatus is that all ordinary proposition can be completely
analyzed and that this process of analysis has to be finite. Based on that, we argue
that it necessarily follows that the elements present in the state of affairs described
by the proposition cannot be further divided since the analysis of the proposition
which describes such a state is necessarily finite. / O objetivo deste trabalho é discutir o problema da divisibilidade infinita de
“corpos”, um problema que era discutido já no período clássico por Aristóteles e
sua análise dos paradoxos de Zenão. Nossa hipótese de trabalho é a de que no
Tractatus-Logico-Philosophicus Wittgenstein teria apresentado uma possível
reformulação desse problema ao tratar da análise de proposições. Uma das teses
centrais no Tractatus é a de que toda a proposição tem uma análise lógica completa
e esse processo de análise tem de ter um fim. Baseado nisso, nós argumentamos que
segue-se necessariamente que os elementos presentes no estado de coisas descritos
pela proposição não podem prosseguir sendo subdivididos, uma vez que o processo
de análise da proposição que descreve tal estado de coisas é necessariamente finito.
|
3 |
Reciprocal classes of Markov processes : an approach with duality formulaeMurr, Rüdiger January 2012 (has links)
In this work we are concerned with the characterization of certain classes of stochastic processes via duality formulae. First, we introduce a new formulation of a characterization of processes with independent increments, which is based on an integration by parts formula satisfied by infinitely divisible random vectors. Then we focus on the study of the reciprocal classes of Markov processes. These classes contain all stochastic processes having the same bridges, and thus similar dynamics, as a reference Markov process. We start with a resume of some existing results concerning the reciprocal classes of Brownian diffusions as solutions of duality formulae. As a new contribution, we show that the duality formula satisfied by elements of the reciprocal class of a Brownian diffusion has a physical interpretation as a stochastic Newton equation of motion. In the context of pure jump processes we derive the following new results. We will analyze the reciprocal classes of Markov counting processes and characterize them as a group of stochastic processes satisfying a duality formula. This result is applied to time-reversal of counting processes. We are able to extend some of these results to pure jump processes with different jump-sizes, in particular we are able to compare the reciprocal classes of Markov pure jump processes through a functional equation between the jump-intensities.
|
4 |
Reciprocal classes of Markov processes : an approach with duality formulaeMurr, Rüdiger January 2012 (has links)
This work is concerned with the characterization of certain classes of stochastic processes via duality formulae. In particular we consider reciprocal processes with jumps, a subject up to now neglected in the literature.
In the first part we introduce a new formulation of a characterization of processes with independent increments. This characterization is based on a duality formula satisfied by processes with infinitely divisible increments, in particular Lévy processes, which is well known in Malliavin calculus. We obtain two new methods to prove this duality formula, which are not based on the chaos decomposition of the space of square-integrable function- als. One of these methods uses a formula of partial integration that characterizes infinitely divisible random vectors. In this context, our characterization is a generalization of Stein’s lemma for Gaussian random variables and Chen’s lemma for Poisson random variables. The generality of our approach permits us to derive a characterization of infinitely divisible random measures.
The second part of this work focuses on the study of the reciprocal classes of Markov processes with and without jumps and their characterization. We start with a resume of already existing results concerning the reciprocal classes of Brownian diffusions as solutions of duality formulae. As a new contribution, we show that the duality formula satisfied by elements of the reciprocal class of a Brownian diffusion has a physical interpretation as a stochastic Newton equation of motion. Thus we are able to connect the results of characterizations via duality formulae with the theory of stochastic mechanics by our interpretation, and to stochastic optimal control theory by the mathematical approach. As an application we are able to prove an invariance property of the reciprocal class of a Brownian diffusion under time reversal.
In the context of pure jump processes we derive the following new results. We describe the reciprocal classes of Markov counting processes, also called unit jump processes, and obtain a characterization of the associated reciprocal class via a duality formula. This formula contains as key terms a stochastic derivative, a compensated stochastic integral and an invariant of the reciprocal class. Moreover we present an interpretation of the characterization of a reciprocal class in the context of stochastic optimal control of unit jump processes. As a further application we show that the reciprocal class of a Markov counting process has an invariance property under time reversal. Some of these results are extendable to the setting of pure jump processes, that is, we admit different jump-sizes. In particular, we show that the reciprocal classes of Markov jump processes can be compared using reciprocal invariants. A characterization of the reciprocal class of compound Poisson processes via a duality formula is possible under the assumption that the jump-sizes of the process are incommensurable. / Diese Arbeit befasst sich mit der Charakterisierung von Klassen stochastischer Prozesse durch Dualitätsformeln. Es wird insbesondere der in der Literatur bisher unbehandelte Fall reziproker Klassen stochastischer Prozesse mit Sprungen untersucht.
Im ersten Teil stellen wir eine neue Formulierung einer Charakterisierung von Prozessen mit unabhängigen Zuwächsen vor. Diese basiert auf der aus dem Malliavinkalkül bekannten Dualitätsformel für Prozesse mit unendlich oft teilbaren Zuwächsen. Wir präsentieren zusätzlich zwei neue Beweismethoden dieser Dualitätsformel, die nicht auf der Chaoszerlegung des Raumes quadratintegrabler Funktionale beruhen. Eine dieser Methoden basiert auf einer partiellen Integrationsformel fur unendlich oft teilbare Zufallsvektoren. In diesem Rahmen ist unsere Charakterisierung eine Verallgemeinerung des Lemma fur Gaußsche Zufallsvariablen von Stein und des Lemma fur Zufallsvariablen mit Poissonverteilung von Chen. Die Allgemeinheit dieser Methode erlaubt uns durch einen ähnlichen Zugang die Charakterisierung unendlich oft teilbarer Zufallsmaße. Im zweiten Teil der Arbeit konzentrieren wir uns auf die Charakterisierung reziproker Klassen ausgewählter Markovprozesse durch Dualitätsformeln. Wir beginnen mit einer Zusammenfassung bereits existierender Ergebnisse zu den reziproken Klassen Brownscher Bewegungen mit Drift. Es ist uns möglich die Charakterisierung solcher reziproken Klassen durch eine Dualitätsformel physikalisch umzudeuten in eine Newtonsche Gleichung. Damit gelingt uns ein Brückenschlag zwischen derartigen Charakterisierungsergebnissen und der Theorie stochastischer Mechanik durch den Interpretationsansatz, sowie der Theorie stochastischer optimaler Steuerung durch den mathematischen Ansatz. Unter Verwendung der Charakterisierung reziproker Klassen durch Dualitätsformeln beweisen wir weiterhin eine Invarianzeigenschaft der reziproken Klasse Browscher Bewegungen mit Drift unter Zeitumkehrung. Es gelingt uns weiterhin neue Resultate im Rahmen reiner Sprungprozesse zu beweisen. Wir beschreiben reziproke Klassen Markovscher Zählprozesse, d.h. Sprungprozesse mit Sprunghöhe eins, und erhalten eine Charakterisierung der reziproken Klasse vermöge einer Dualitätsformel. Diese beinhaltet als Schlüsselterme eine stochastische Ableitung nach den Sprungzeiten, ein kompensiertes stochastisches Integral und eine Invariante der reziproken Klasse. Wir präsentieren außerdem eine Interpretation der Charakterisierung einer reziproken Klasse im Rahmen der stochastischen Steuerungstheorie. Als weitere Anwendung beweisen wir eine Invarianzeigenschaft der reziproken Klasse Markovscher Zählprozesse unter Zeitumkehrung. Einige dieser Ergebnisse werden fur reine Sprungprozesse mit unterschiedlichen Sprunghöhen verallgemeinert. Insbesondere zeigen wir, dass die reziproken Klassen Markovscher Sprungprozesse vermöge reziproker Invarianten unterschieden werden können. Eine Charakterisierung der reziproken Klasse zusammengesetzter Poissonprozesse durch eine Dualitätsformel gelingt unter der Annahme inkommensurabler Sprunghöhen.
|
5 |
Growth of Galton-Watson trees with lifetimes, immigrations and mutationsCao, Xiaoou January 2011 (has links)
In this work, we are interested in Growth of Galton-Watson trees under two different models: (1) Galton-Watson (GW) forests with lifetimes and/or immigrants, and (2) Galton-Watson forests with mutation, which we call Galton-Watson-Clone-Mutant forests, or GWCMforests. Under each model, we study certain consistent families (Fλ)λ≥0 of GW/GWCM forests and associated decompositions that include backbone decomposition as studied by many authors. Specifically, consistency here refers to the property that for each μ ≤ λ, the forest Fμ has the same distribution as the subforest of Fλ spanned by the blue leaves in a Bernoulli leaf colouring, where each leaf of Fλ is coloured in blue independently with probability μ/λ. In the first model, the case of exponentially distributed lifetimes and no immigration was studied by Duquesne and Winkel and related to the genealogy of Markovian continuous-state branching processes (CSBP). We characterise here such families in the framework of arbitrary lifetime distributions and immigration according to a renewal process, and show convergence to Sagitov’s (non-Markovian) generalisation of continuous-state branching renewal processes, and related processes with immigration. In the second model, we characterise such families in terms of certain bivariate CSBP with branching mechanisms studied previously by Watanabe and show associated convergence results. This is related to, but more general than Bertoin’s study of GWCM trees, and also ties in with work by Abraham and Delmas, who study directly some of the limiting processes.
|
6 |
Caractérisations des modèles multivariés de stables-Tweedie multiples / Characterizations of multivariates of stables-Tweedie multiplesMoypemna sembona, Cyrille clovis 17 June 2016 (has links)
Ce travail de thèse porte sur différentes caractérisations des modèles multivariés de stables-Tweedie multiples dans le cadre des familles exponentielles naturelles sous la propriété de "steepness". Ces modèles parus en 2014 dans la littérature ont été d’abord introduits et décrits sous une forme restreinte des stables-Tweedie normaux avant les extensions aux cas multiples. Ils sont composés d’un mélange d’une loi unidimensionnelle stable-Tweedie de variable réelle positive fixée, et des lois stables-Tweedie de variables réelles indépendantes conditionnées par la première fixée, de même variance égale à la valeur de la variable fixée. Les modèles stables-Tweedie normaux correspondants sont ceux du mélange d’une loi unidimensionnelle stable-Tweedie positive fixé et les autres toutes gaussiennes indépendantes. A travers des cas particuliers tels que normal, Poisson, gamma, inverse gaussienne, les modèles stables-Tweedie multiples sont très fréquents dans les études de statistique et probabilités appliquées. D’abord, nous avons caractérisé les modèles stables-Tweedie normaux à travers leurs fonctions variances ou matrices de covariance exprimées en fonction de leurs vecteurs moyens. La nature des polynômes associés à ces modèles est déduite selon les valeurs de la puissance variance à l’aide des propriétés de quasi orthogonalité, des systèmes de Lévy-Sheffer, et des relations de récurrence polynomiale. Ensuite, ces premiers résultats nous ont permis de caractériser à l’aide de la fonction variance la plus grande classe des stables-Tweedie multiples. Ce qui a conduit à une nouvelle classification laquelle rend la famille beaucoup plus compréhensible. Enfin, une extension de caractérisation des stables-Tweedie normaux par fonction variance généralisée ou déterminant de la fonction variance a été établie via leur propriété d’indéfinie divisibilité et en passant par les équations de Monge-Ampère correspondantes. Exprimées sous la forme de produit des composantes du vecteur moyen aux puissances multiples, la caractérisationde tous les modèles multivariés stables-Tweedie multiples par fonction variance généralisée reste un problème ouvert. / In the framework of natural exponential families, this thesis proposes differents characterizations of multivariate multiple stables-Tweedie under "steepness" property. These models appeared in 2014 in the literature were first introduced and described in a restricted form of the normal stables-Tweedie models before extensions to multiple cases. They are composed by a fixed univariate stable-Tweedie variable having a positive domain, and the remaining random variables given the fixed one are reals independent stables-Tweedie variables, possibly different, with the same dispersion parameter equal to the fixed component. The corresponding normal stables-Tweedie models have a fixed univariate stable-Tweedie and all the others are reals Gaussian variables. Through special cases such that normal, Poisson, gamma, inverse Gaussian, multiple stables-Tweedie models are very common in applied probability and statistical studies. We first characterized the normal stable-Tweedie through their variances function or covariance matrices expressed in terms of their means vector. According to the power variance parameter values, the nature of polynomials associated with these models is deduced with the properties of the quasi orthogonal, Levy-Sheffer systems, and polynomial recurrence relations. Then, these results allowed us to characterize by function variance the largest class of multiple stables-Tweedie. Which led to a new classification, which makes more understandable the family. Finally, a extension characterization of normal stable-Tweedie by generalized variance function or determinant of variance function have been established via their infinite divisibility property and through the corresponding Monge-Ampere equations. Expressed as product of the components of the mean vector with multiple powers parameters reals, the characterization of all multivariate multiple stable- Tweedie models by generalized variance function remains an open problem.
|
7 |
Conditions d'existence des processus déterminantaux et permanentaux / Existence conditions for determinantal and permanental processesMaunoury, Franck 27 March 2018 (has links)
Nous établissons des conditions nécessaires et suffisantes d’existence et d’infinie divisibilité pour des processus ponctuels alpha-déterminantaux et, lorsque alpha est positif, pour leur intensité sous-jacente (en tant que processus de Cox). Dans le cas où l’espace est fini, ces distributions correspondent à des lois binomiales, négatives binomiales et gamma multidimensionnelles. Nous étudions de façon approfondie ces deux derniers cas avec un noyau non nécessairement symétrique. / We establish necessary and sufficient conditions for the existence and infinite divisibility of alpha-determinantal processes and, when alpha is positive, of their underlying intensity (as Cox process). When the space is finite, these distributions correspond to multidimensional binomial, negative binomial and gamma distributions. We make an in-depth study of these last two cases with a non necessarily symmetric kernel.
|
Page generated in 0.094 seconds