Adult Stem Cells (SCs) have been found in almost every organ. They are responsible for<p>homeostasis and tissue repair after injury. SCs reside and self-renew in the adult body<p>throughout the life of the organism. In rapid self-renewing organs, such as the skin, the<p>intestine and the blood, SCs divide many times during the life of the animal in order to sustain<p>the homeostatic needs of the tissue.<p>All cells of the body, including SCs, are constantly subjected to DNA assaults arising from<p>endogenous sources, such as reactive oxygen species (ROS) generated by cellular<p>metabolism, or exogenous assaults arising from the environment. The DNA damage response<p>(DDR) and DNA repair mechanisms protect cells from accumulating DNA damage by<p>inducing transient cell cycle arrest allowing DNA repair, triggering senescence or apoptosis.<p>DNA damages trigger the activation of the effectors of the DDR inducing a transient cell<p>cycle arrest, allowing DNA repair, or triggering a permanent arrest of the cell cycle or<p>apoptosis if damages are too extensive.<p>As skin is the outermost barrier of the body, epidermal cells, including SCs, are<p>continuously subjected to genotoxic stress, such as UV rays, ionizing radiation (IR) and<p>chemicals. The skin epidermis is composed of hair follicles (HFs), its associated sebaceous<p>gland (SG) and the surrounding inter-follicular epidermis (IFE). Different types of SCs<p>maintain the homeostasis of the skin; multipotent adult bulge SCs ensure the cyclic<p>regeneration of the HF and the repair of the epidermis after injury, while individual unipotent<p>SCs ensure homeostasis of the SG and the IFE.<p>In tissues with high cellular turnover, such as the epidermis, the numerous divisions that a<p>SC undergoes could result in the accumulation of replication-associated DNA damage. It has<p>been suggested that adult SCs may undergo asymmetric divisions in which the daughter SC<p>retains the older (thus “immortal”) DNA strand, while the daughter cell committed to<p>differentiation inherits the newly synthesized strand that may have incorporated replicationderived<p>mutations. The in vivo relevance of this mechanism is still a matter of intense debate.<p>We used multiple in vivo experimental approaches to investigate precisely how bulge SCssegregate their chromosomes during HF morphogenesis, SC activation and skin homeostasis.<p>Using pulse-chase experiments with two different uridine analogs together with DNAindependent<p>chromatin labelling, we showed that multipotent HF SCs segregate their<p>chromosomes randomly, and that the label-retention observed in the skin epidermis derives<p>solely from relative quiescence of skin SCs 1.<p>We investigated the in vivo response of multipotent adult HF bulge SCs to DNA damage<p>induced by IR. We showed that bulge SCs are profoundly resistant to DNA damage-induced<p>cell death compared to their more mature counterparts. Interestingly, we demonstrated that<p>resistance of bulge SCs to IR-induced apoptosis does not rely on their relative quiescence.<p>Moreover, we showed that DDR in SCs does not lead to premature senescence. We found that<p>two intrinsic cellular mechanisms participate in the resistance of bulge SCs to DNA damageinduced<p>cell death. Bulge SCs express higher level of the anti-apoptotic Bcl-2 and present<p>more transient activation of p53 due to a faster DNA repair activity mediated by a nonhomologous<p>end joining (NHEJ) mechanism. Since NHEJ is not error free, this property<p>might be a double-edged sword, supporting short-term survival of bulge SCs but impairing<p>long-term genomic integrity 2.<p>While we unveiled the relevance of DSBs repair by NHEJ in the skin epidermis, little is<p>known about the role of homologous recombination (HR) during the morphogenesis of the<p>skin epidermis. Brca1 is an essential protein for HR. Conditional deletion of Brca1 in the<p>developing epidermis leads to congenital alopecia accompanied by a decreased density of hair<p>placodes. The remaining HFs never produce mature hair and progressively degenerate due to<p>high levels of apoptosis. Multipotent adult HF bulge SCs cannot be detected in adult HF in<p>the Brca1 cKO epidermis. Brca1 deletion in the epidermis triggers p53 activation throughout<p>the epidermis, which activates apoptosis. Interestingly, IFE and the isthmus region of the HF<p>do not present any pathological phenotype by constitutive deletion of Brca1. Our results<p>demonstrated the critical role of Brca1 during HF morphogenesis. Future studies will be<p>required to understand the molecular mechanisms controlling this phenotype / Doctorat en Sciences biomédicales et pharmaceutiques / info:eu-repo/semantics/nonPublished
Identifer | oai:union.ndltd.org:ulb.ac.be/oai:dipot.ulb.ac.be:2013/209518 |
Date | 24 January 2013 |
Creators | Candi, Aurélie |
Contributors | Blanpain, Cédric, Parmentier, Marc, Barrandon, Yann, Hoeijmakers, Jan, Franchimont, Denis, Abramowicz, Marc, Fuks, François |
Publisher | Universite Libre de Bruxelles, Université libre de Bruxelles, Faculté de Médecine – Sciences biomédicales, Bruxelles |
Source Sets | Université libre de Bruxelles |
Language | English |
Detected Language | English |
Type | info:eu-repo/semantics/doctoralThesis, info:ulb-repo/semantics/doctoralThesis, info:ulb-repo/semantics/openurl/vlink-dissertation |
Format | 2 full-text file(s): application/pdf | application/pdf |
Rights | 2 full-text file(s): info:eu-repo/semantics/closedAccess | info:eu-repo/semantics/openAccess |
Page generated in 0.0031 seconds