Submitted by Joyce Melo (joycemello79@gmail.com) on 2016-03-14T15:37:30Z
No. of bitstreams: 1
Dissertação de mestrado - Francisco Almino.pdf: 1359333 bytes, checksum: 9ba9bf083392c562a05674c9c8c918c9 (MD5) / Approved for entry into archive by Divisão de Documentação/BC Biblioteca Central (ddbc@ufam.edu.br) on 2016-03-15T15:17:52Z (GMT) No. of bitstreams: 1
Dissertação de mestrado - Francisco Almino.pdf: 1359333 bytes, checksum: 9ba9bf083392c562a05674c9c8c918c9 (MD5) / Approved for entry into archive by Divisão de Documentação/BC Biblioteca Central (ddbc@ufam.edu.br) on 2016-03-15T15:19:21Z (GMT) No. of bitstreams: 1
Dissertação de mestrado - Francisco Almino.pdf: 1359333 bytes, checksum: 9ba9bf083392c562a05674c9c8c918c9 (MD5) / Made available in DSpace on 2016-03-15T15:19:21Z (GMT). No. of bitstreams: 1
Dissertação de mestrado - Francisco Almino.pdf: 1359333 bytes, checksum: 9ba9bf083392c562a05674c9c8c918c9 (MD5)
Previous issue date: 2012-04-04 / CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / In this dissertation, we propose a characterization of Euclidean spheres S . n Let g and γ be parameterized geodesics meeting at a point p of M . Such arrangement will be called a con guration and denoted by (g, γ)Γ. Let us p consider the following condition: For any con guration (g, γ) and a point p q = γ(s) 6= p, there exist two and only two parameters t < 0Γ< t such 1 2 that r = g(t ) and r = g(t ) determine geodesic segments [q, r ] and 1 1 2 2 1 σ [q, r ]in such a way that the geodesic triangles ([p, q], [q, r ], [r , p]) and 2 τ γ 1 σ 1 g ([p, q], [q, r ], [r , p] ) are both isosceles having [p, q]Γas a common basis. γ 2 τ 2 g γ We show that if a Riemannian manifold M is complete, connected, oriented and of dimension n ≥−2Γand satis es the condition above then M is isometric to S . Actually, the axiom above assures that M is a Wiedersehen n manifold. Hence, the result will follow from L.W.Green [8], C.T.Yang [1] and J. Kazdan [7]. / Nesta dissertação, apresentaremos uma caracterização das esferas euclidianas S . n Sejam g e γ duas geodésicas parametrizadas que se interceptam em um ponto p de M . A essa situação chamaremos de con guração e representaremos por (g, γ) . Agora consideremos a seguinte condição: Para toda p con guração (g, γ) e para todo ponto q = γ(s) 6= p existem dois e apenas p dois números reais t e t , com t < 0 < t , tais que os pontos r = g(t ) 1 2 2 1 1 1 e r = g(t ) determinam os segmentos geodésicos [q, r ] e [q, r ] , de modo 2 2 1 γ 2 τ que os triângulos geodésicos ([p, q] , [q, r ] , [r , p] ) e ([p, q] , [q, r ] , [r , p] ) γ 1 σ 1 g γ 2 τ 2 g são triângulos isósceles cuja base comum é [p, q]. γ Mostraremos que se uma variedade Riemanniana M , completa, conexa, de dimensão n ≥−2 e orientada satisfaz o axioma acima, então M é isométrica a S . Em verdade, usaremos o fato que a condição acima é su ciente para que n M seja uma variedade wiedersehen. Daí a caracterização desejada segue-se dos trabalhos de L.W.Green [8], C.T.Yang [1] e J. Kazdan [7].
Identifer | oai:union.ndltd.org:IBICT/oai:http://localhost:tede/4933 |
Date | 04 April 2012 |
Creators | Silva, Francisco Almino Gomes da |
Contributors | Tribuzy, Ivan de Azevedo, Tribuzy, Ivan de Azevedo, Oliveira, Inês Silva de, Veloso, José Miguel Martins |
Publisher | Universidade Federal do Amazonas, Programa de Pós-graduação em Matemática, UFAM, Brasil, Instituto de Ciências Exatas |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Format | application/pdf |
Source | reponame:Biblioteca Digital de Teses e Dissertações da UFAM, instname:Universidade Federal do Amazonas, instacron:UFAM |
Rights | info:eu-repo/semantics/openAccess |
Relation | -7807118400798055458, 600, 600, -8156311678363143599 |
Page generated in 0.0016 seconds