Many pathological processes are associated with excessive neurotransmitter release that leads to the over-stimulation of post-synaptic neurotransmitter receptors. Examples include excessive activation of glutamate receptors in ischemic stroke and hyper-dopaminergic state in schizophrenia and drug addiction. Thus, it would seem that simply antagonizing the involved receptors should be able to correct the pathological condition. In some instances, this strategy has been somewhat effective, such as with the use of dopamine D2 receptor antagonists as antipsychotics in the treatment of positive symptoms of schizophrenia despite severe side effect. However, clinical application of drugs antagonizing glutamate receptor in the treatment of stoke, although attracting intensive research effort, has been restricted by serious side effects caused by suppressing postsynaptic responses that are needed for normal brain function. As a consequence, it is important to develop novel therapeutics aiming at specific targets with minimized side effects. Numerous studies have suggested that the pathophysiology of neuropsychiatric disorders, drug addictions and stroke involves multiple neurotransmitter receptor systems such as the dopamine and glutamate systems. The activation or inhibition of one receptor can have cross-functional effect that will be better understood by investigating the functional and structural relationship between receptor systems. Thus, the present study has focused on characterizing receptor-receptor interactions associated with dopamine receptors and glutamate receptors, and to elucidate the physiological and pathological consequence of altered receptor interactions in schizophrenia, depression and ischemic stroke.
Identifer | oai:union.ndltd.org:TORONTO/oai:tspace.library.utoronto.ca:1807/29905 |
Date | 31 August 2011 |
Creators | Wang, Min |
Contributors | Liu, Fang |
Source Sets | University of Toronto |
Language | en_ca |
Detected Language | English |
Type | Thesis |
Page generated in 0.0019 seconds