Mycoplasma pneumoniae ist ein parasitär lebendes Bakterium, das eine atypische Pneumonie beim Menschen verursacht. Aufgrund seiner geringen Genomgröße besitzt dieser Organismus einen eingeschränkten Metabolismus sowie eine limitierte Zahl an Pathogenitätsfaktoren. Dennoch ist dieser Mikroorganismus perfekt an seinen Wirt angepasst und es war zu vermuten, dass neben dem komplexen Adhäsionsapparat von M. pneumoniae auch glykolytische Enzyme eine Rolle bei der Interaktion mit humanen Zellen spielen. Diese Enzyme sind maßgeblich bei intrazellulär ablaufenden Stoffwechselprozessen beteiligt. Es wurde jedoch bereits bei anderen Bakterien gezeigt, dass glykolytische Enzyme ebenfalls auf der Bakterienoberfläche zu finden sind und dort mit Komponenten der extrazellulären Matrix des Wirtes interagieren können. Dieser Vorgang trägt offensichtlich zur erfolgreichen Kolonisation des Wirtes bei. Ziel dieser Arbeit war es, alle glykolytischen Enzyme von M. pneumoniae hinsichtlich ihrer Lokalisierung zu beschreiben und Teilaspekte ihrer Funktion in der Interaktion mit Wirtskomponenten zu analysieren.
Die glykolytischen Enzyme wurden rekombinant produziert und für die Herstellung von monospezifischen polyklonalen Antikörpern verwendet. Die Lokalisation der Enzyme wurde durch Nachweis in der Membran- und Zytosolfraktion des M. pneumoniae Gesamtantigens untersucht. Mittels Immunfluoreszenz, Colony Blot und Protease-Verdau intakter Bakterienzellen wurde bestätigt, dass acht (Glycerinaldehyd-3-phosphat-Dehydrogenase, Lactatdehydrogenase, Transketolase, Pyruvatdehydrogenase, Phosphoglyceratmutase und Pyruvatdehydrogenase Untereinheiten A-C) der 19 glykolytischen Enzyme mit der Bakterienoberfläche assoziiert vorkommen.
Die Untersuchung von Mutanten ergab, dass die Lokalisation der Enzyme nicht an das Vorkommen der für die Anheftung der Bakterien an Zielstrukturen wesentlichen Adhäsine wie die Proteine P1, P40 und P90 sowie das Oberflächenprotein P01, gekoppelt ist. Jedoch sind sowohl intakte Zellen von M. pneumoniae als auch die oberflächenlokalisierten glykolytischen Enzyme in der Lage, an verschiedene humane Zellen zu binden. Eine Analyse der nachweisbaren Proteine auf der Oberfläche der Zellen führte zur Auswahl von sechs humanen Proteinen für weiterführende Studien: Plasminogen, Vitronektin, Fibronektin, Fibrinogen, Laminin und Laktoferrin. Mittels ELISA wurde eine konzentrationsabhängige Bindung der oberflächenassoziierten Enzyme von M. pneumoniae mit Wirtsproteinen festgestellt, die hinsichtlich der Intensität jedoch Unterschiede aufwies. So konnten ausgeprägte Interaktionen aller Enzyme mit humanem Plasminogen und Vitronektin nachgewiesen werden. Die Bindung von Fibronektin und Laktoferrin ist dagegen nur für einen Teil der glykolytischen Enzyme zu bestätigen. Die Untersuchung verschiedener Einflussfaktoren ergab, dass alle Bindungen zwischen glykolytischen Enzymen und humanen Proteinen spezifisch durch die entsprechenden Antiseren gehemmt werden und dass der Großteil der Interaktionen ionischen Wechselwirkungen unterliegt. Die Bindung zu Plasminogen basiert überwiegend auf Lysin-Resten. Untersuchungen, ob sich die glykolytischen Enzyme gegenseitig in der Bindung zu Wirtsfaktoren beeinflussen, ergab ein komplexes Muster, das hinsichtlich Plasminogen, Fibronektin und Laminin für eine Überlagerung der für die Interaktion maßgeblichen Proteinbereiche spricht.
Die Untersuchung einer möglichen Aktivierung von inaktivem Plasminogen zu proteolytisch aktivem Plasmin ergab, dass in Gegenwart aller oberflächenlokalisierten glykolytischen Enzyme von M. pneumoniae Plasmin gebildet wird. Es wurden jedoch Unterschiede im Aktivierungspotenzial nachgewiesen. Die Pyruvatdehydrogenase Untereinheit B zeigte die höchste, die Pyruvatdehydrogenase Untereinheit C die geringste Plasminproduktion. Die Verwendung des gewebespezifischen Plasminogenaktivators führte zu einer höheren Aktivierung als der Urokinase-Typ Plasminogenaktivator. Die Variabilität der Plasminproduktion kann mit der unterschiedlichen Bindungsaffinität der glykolytischen Enzyme zu Plasminogen begründet werden. So besitzt die Pyruvatdehydrogenase Untereinheit B im Vergleich mit der Pyruvatdehydrogenase Untereinheit C ein höheres Bindepotenzial, das sich in der gemessenen Aktivierung widerspiegelt. Die Bildung von Plasmin kann zum Abbau verschiedener extrazellulärer Matrix-Proteine führen. Diese Prozesse sind physiologisch, z. B. in der Fibrinolyse, von Bedeutung. Während in Gegenwart der glykolytischen Enzyme die humanen Proteine Laktoferrin, Laminin und Fibronektin nicht abgebaut wurde, konnte Fibrinogen in Gegenwart der Pyruvatdehydrogenase Untereinheit B bzw. der Phosphoglyceratmutase und Vitronektin durch alle glykolytischen Enzyme (bis auf die Pyruvatdehydrogenase Untereinheit C) degradiert werden.
Mit der erstmals durchgeführten Analyse aller glykolytischen Enzyme eines Mikroorganismus hinsichtlich ihrer Lokalisation und der Bindung zu Komponenten der humanen extrazellulären Matrix wurde ein komplexes Netzwerk an Wirt-Erreger-Interaktionen nachgewiesen.
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa.de:bsz:14-qucosa-213500 |
Date | 24 November 2016 |
Creators | Gründel, Anne |
Contributors | Technische Universität Dresden, Fakultät Mathematik und Naturwissenschaften, Prof. Dr. Enno Jacobs, Prof. Dr. Isolde Röske |
Publisher | Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | deu |
Detected Language | German |
Type | doc-type:doctoralThesis |
Format | application/pdf |
Page generated in 0.0027 seconds