Return to search

Swedish Natural Language Processing with Long Short-term Memory Neural Networks : A Machine Learning-powered Grammar and Spell-checker for the Swedish Language

Natural Language Processing (NLP) is a field studying computer processing of human language. Recently, neural network language models, a subset of machine learning, have been used to great effect in this field. However, research remains focused on the English language, with few implementations in other languages of the world. This work focuses on how NLP techniques can be used for the task of grammar and spelling correction in the Swedish language, in order to investigate how language models can be applied to non-English languages. We use a controlled experiment to find the hyperparameters most suitable for grammar and spelling correction on the Göteborgs-Posten corpus, using a Long Short-term Memory Recurrent Neural Network. We present promising results for Swedish-specific grammar correction tasks using this kind of neural network; specifically, our network has a high accuracy in completing these tasks, though the accuracy achieved for language-independent typos remains low.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:lnu-76819
Date January 2018
CreatorsGudmundsson, Johan, Menkes, Francis
PublisherLinnéuniversitetet, Institutionen för datavetenskap och medieteknik (DM), Linnéuniversitetet, Institutionen för datavetenskap och medieteknik (DM)
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0015 seconds