Return to search

Retas no Espaço Projetivo de dimensão 3

Submitted by Divisão de Documentação/BC Biblioteca Central (ddbc@ufam.edu.br) on 2017-09-21T12:54:56Z
No. of bitstreams: 2
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Dissertação - Téo Felipe dos Santos.pdf: 991435 bytes, checksum: 0d708c549331be3e608715b521959c38 (MD5) / Approved for entry into archive by Divisão de Documentação/BC Biblioteca Central (ddbc@ufam.edu.br) on 2017-09-21T12:55:08Z (GMT) No. of bitstreams: 2
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Dissertação - Téo Felipe dos Santos.pdf: 991435 bytes, checksum: 0d708c549331be3e608715b521959c38 (MD5) / Made available in DSpace on 2017-09-21T12:55:08Z (GMT). No. of bitstreams: 2
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Dissertação - Téo Felipe dos Santos.pdf: 991435 bytes, checksum: 0d708c549331be3e608715b521959c38 (MD5)
Previous issue date: 2017-07-10 / We present in this work a study of lines in the P3, initially approached some
concepts fundamental to the Algebraic Geometry, such as the projective space, projective
varieties, dimension, degree and blowup. Next we study the set of the lines
in the projective spaces and, more detailed, in the space P3. In which it is shown
that they form an algebraic variety called the Grassman variety. We also studied
the Schubert cycles and the Grassmannian Chow rings. These results apply to the
study of lines on quadratic surfaces in P3.
For example, it is shown that 4 lines in the general position on P3 have 2 secant
lines, and that a quadratic surfaces swollen at 1 point is isomorphic to the plane
swollen at 2 points. / Apresentamos neste trabalho um estudo de retas no P3, inicialmente abordamos
alguns conceitos fundamentais à Geometria Algébrica, tais como o espaço projetivo,
variedades projetivas, dimensão, grau e blowup (inchamento). Em seguida estudamos
o conjunto das retas nos espaços projetivos e, mais detalhado, no espaço P3.
No qual é mostrado que elas formam uma variedade algébrica chamada a variedade
de Grassmann. Também estudamos os ciclos de Schubert e os anéis de Chow das
grassmannianas. Estes resultados se aplicam ao estudo das retas nas superfícies
quádricas em P3. Por exemplo, é mostrado que 4 retas na posição geral no P3 têm 2
retas secantes, e que uma quádrica inchada em 1 ponto é isomorfa ao plano inchado
em 2 pontos.

Identiferoai:union.ndltd.org:IBICT/oai:http://localhost:tede/5912
Date10 July 2017
CreatorsSantos, Téo Felipe dos, 92-98250-5142
Contributorsppgmufam@gmail.com, ogachev, Dmitry
PublisherUniversidade Federal do Amazonas, Programa de Pós-graduação em Matemática, UFAM, Brasil, Instituto de Ciências Exatas
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis
Formatapplication/pdf
Sourcereponame:Biblioteca Digital de Teses e Dissertações da UFAM, instname:Universidade Federal do Amazonas, instacron:UFAM
Rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/, info:eu-repo/semantics/openAccess
Relation-7807118400798055458, 600, 500, -8156311678363143599

Page generated in 0.0019 seconds