Les variétés homogènes projectives sous un groupe algébrique déployé<br />ont une géométrie assez simple. La décomposition de Bruhat fournit, en<br />effet, une décomposition cellulaire de ces variétés. Il en résulte que<br />l'anneau de Chow de telles variétés admet une base formée des classes<br />des adhérences de ces cellules, appelées variétés de Schubert. <br />Il en est de même pour l'anneau de Grothendieck de telles variétés. <br />Cela entraîne en particulier que ces deux anneaux sont sans torsion. <br />Plus précisément, la base ainsi obtenue pour l'anneau de Grothendieck <br />fournit la filtration topologique de cette anneau et redonne <br />la base de l'anneau de Chow par passage au gradué. D'autre part, <br />il existe une seconde base due à Pittie et Steinberg de l'anneau <br />de Grothendieck de ces variétés, invariante sous l'action du groupe de Galois.<br /><br />Le Chapitre II de la thèse revient, dans le cas des drapeaux complets<br />associés à un espace vectoriel, sur les résultats connus concernant<br />la combinatoire donnant les expressions des faisceaux structuraux des<br />variétés de Schubert dans l'anneau de Grothendieck, ce qui permet, en<br />suivant les travaux de Lascoux notamment, d'exprimer combinatoirement<br />la matrice de changement de bases entre les deux bases ci-dessus. Dans<br />le cas de la variété de drapeaux complets d'un espace vectoriel de<br />dimension trois, nous donnons des résolutions explicites des faisceaux<br />structuraux des variétés de Schubert en termes des fibrés de la base<br />de Pittie.<br /><br />Les groupes de Chow sont connus en codimension un et ont été étudiés<br />en codimension deux par Karpenko dans le cas des variétés de<br />Severi-Brauer. Le calcul des motifs des varietés homogènes projectives<br />sous le groupe projectif linéaire d'une algébre simple centrale sur un<br />corps se ramène sous certaines conditions au calcul de motifs de<br />variétés de Severi-Brauer généralisées, formes de grassmaniennes,<br />comme l'ont montré Calmès, Petros, Semenov et Zainouline. Dans le<br />chapitre II, nous construisons des isomorphismes de variétés<br />explicites qui permettent de ramener le calcul des groupes de Chow de<br />ces variétés au calcul de groupes de Chow de variétés de Severi-Brauer<br />généralisées.<br /><br />Les techniques décrites dans le chapitre III sont réutilisées au<br />chapitre IV pour redémontrer un résultat de Karpenko sur la<br />décomposition du motif de Chow de variétés de Severi-Brauer associée<br />à une algèbre de matrices à coefficients dans une algèbre simple<br />centrale.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00120949 |
Date | 09 October 2006 |
Creators | Doray, Franck |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0021 seconds