• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • 1
  • Tagged with
  • 6
  • 6
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Hypersurfaces cubiques : équivalence rationnelle, R-équivalence et approximation faible

Madore, David 08 April 2005 (has links) (PDF)
Cette thèse présente quelques résultats portant sur l'arithmétique de variétés rationnellement connexes et, plus spécifiquement, des hypersurfaces cubiques, dans trois directions principales : l'équivalence rationnelle, la R-équivalence, et l'approximation faible. Dans la première partie, on décrit de façon explicite la spécialisation de la R-équivalence. La seconde est consacrée à la nullité du groupe de Chow de 0-cycles de degré 0 sur une hypersurface cubique ayant bonne réduction sur les p-adiques. La troisième montre un résultat d'approximation faible aux places de bonne réduction sur les surfaces cubiques sur les corps de fonctions. La quatrième montre la R-trivialité des hypersurfaces cubiques de grande dimension sur les p-adiques. La cinquième partie explicite par un calcul la non-nullité du groupe de Chow de 0-cycles de degré 0 d'une hypersurface cubique de dimension 3 sur un corps de dimension 2. Enfin, on étudie la R-équivalence très libre sur les variétés toriques.
2

Calculs explicites dans les groupes de Grotendieck et de Chow des variétés homogènes projectives

Doray, Franck 09 October 2006 (has links) (PDF)
Les variétés homogènes projectives sous un groupe algébrique déployé<br />ont une géométrie assez simple. La décomposition de Bruhat fournit, en<br />effet, une décomposition cellulaire de ces variétés. Il en résulte que<br />l'anneau de Chow de telles variétés admet une base formée des classes<br />des adhérences de ces cellules, appelées variétés de Schubert. <br />Il en est de même pour l'anneau de Grothendieck de telles variétés. <br />Cela entraîne en particulier que ces deux anneaux sont sans torsion. <br />Plus précisément, la base ainsi obtenue pour l'anneau de Grothendieck <br />fournit la filtration topologique de cette anneau et redonne <br />la base de l'anneau de Chow par passage au gradué. D'autre part, <br />il existe une seconde base due à Pittie et Steinberg de l'anneau <br />de Grothendieck de ces variétés, invariante sous l'action du groupe de Galois.<br /><br />Le Chapitre II de la thèse revient, dans le cas des drapeaux complets<br />associés à un espace vectoriel, sur les résultats connus concernant<br />la combinatoire donnant les expressions des faisceaux structuraux des<br />variétés de Schubert dans l'anneau de Grothendieck, ce qui permet, en<br />suivant les travaux de Lascoux notamment, d'exprimer combinatoirement<br />la matrice de changement de bases entre les deux bases ci-dessus. Dans<br />le cas de la variété de drapeaux complets d'un espace vectoriel de<br />dimension trois, nous donnons des résolutions explicites des faisceaux<br />structuraux des variétés de Schubert en termes des fibrés de la base<br />de Pittie.<br /><br />Les groupes de Chow sont connus en codimension un et ont été étudiés<br />en codimension deux par Karpenko dans le cas des variétés de<br />Severi-Brauer. Le calcul des motifs des varietés homogènes projectives<br />sous le groupe projectif linéaire d'une algébre simple centrale sur un<br />corps se ramène sous certaines conditions au calcul de motifs de<br />variétés de Severi-Brauer généralisées, formes de grassmaniennes,<br />comme l'ont montré Calmès, Petros, Semenov et Zainouline. Dans le<br />chapitre II, nous construisons des isomorphismes de variétés<br />explicites qui permettent de ramener le calcul des groupes de Chow de<br />ces variétés au calcul de groupes de Chow de variétés de Severi-Brauer<br />généralisées.<br /><br />Les techniques décrites dans le chapitre III sont réutilisées au<br />chapitre IV pour redémontrer un résultat de Karpenko sur la<br />décomposition du motif de Chow de variétés de Severi-Brauer associée<br />à une algèbre de matrices à coefficients dans une algèbre simple<br />centrale.
3

Deux contributions à l'arithmétique des variétés : R-équivalence et cohomologie non ramifiée / Two contributions to the arithmetic of varieties : R-equivalence and unramified cohomology

Pirutka, Alena 12 October 2011 (has links)
Dans cette thèse, on s'intéresse à des propriétés arithmétiques de variétés algébriques. Elle contient deux parties et huit chapitres que l'on peut lire indépendamment. Dans la première partie on étudie la R-équivalence sur les points rationnels des variétés algébriques. Dans le chapitre I.1 on établit que pour certaines familles projectives et lisses X→Y de variétés géométriquement rationnelles sur un corps local k de caractéristique nulle le nombre des classes de R-équivalence de la fibre Xy(k) est localement constant quand y varie dans Y(k). Dans le chapitre I.2 on s'intéresse à des variétés rationnellement simplement connexes. On établit que la R-équivalence est triviale sur de telles variétés définies sur C(t). Dans le chapitre I.3 on introduit une autre relation d'équivalence sur les points rationnels des variétés définies sur un corps muni d'une valuation discrète et on étudie quelques propriétés de cette relation d'équivalence. Dans le chapitre I.4 on étudie la R-équivalence sur les variétés rationnellement connexes définies sur les corps réels clos ou p-adiqument clos. La deuxième partie de cette thèse est consacrée à l'étude de quelques questions liées à la cohomologie non ramifiée. Dans le chapitre II.1 on utilise le troisième groupe de cohomologie non ramifiée pour donner un exemple d'une variété projective et lisse géométriquement rationnelle X, définie sur un corps fini Fp, telle que l'application de groupes de Chow de codimension deux de la variété X dans le groupe de Chow de cycles de codimension deux sur la clôture algébrique, fixés par l’action de Galois, n'est pas surjective. Dans le chapitre II.2 on s'intéresse aux fibrations au-dessus d'une surface sur un corps fini dont la fibre générique est une variété de Severi-Brauer et on montre que le troisième groupe de cohomologie non ramifiée s'annule pour de telles variétés. Dans le chapitre II.3, on établit l'invariance birationnelle de certains termes de la suite spectrale de Bloch et Ogus pour des variétés sur un corps de dimension cohomologique bornée. Sur un corps fini, on relie un de ces invariants avec le conoyau de l'application classe de cycle l-adique pour les 1-cycles. Dans le chapitre II.4, on s'intéresse à “borner” la ramification des éléments des groupes de cohomologie Hr(K, Z/n), r>0, si K est le corps des fonctions d'une variété intègre définie sur un corps de caractéristique nulle k. / In this Ph.D. thesis, we investigate some arithmetic properties of algebraic varieties. The thesis consists of two parts, divided into eight chapters. The first part is devoted to the study of R-equivalence on rational points of algebraic varieties. In chapter I.1, we prove that for some families X→Y of smooth projective geometrically rational varieties defined over a finite extension of Qp, the number of R-equivalence classes on Xy(k) is a locally constant function on Y(k). In chapter I.2, we establish the triviality of R-equivalence for rationally simply connected varieties defined over C(t). In chapter I.3, we introduce and analyze a different equivalence relation on rational points of varieties defined over a field equipped with a discrete valuation, and then compare it with R-equivalence. In chapter I.4, we study R-equivalence for varieties over real closed and p-adically closed fields. The second part of the thesis deals with some questions involving unramified cohomology. In chapter II.1, we use the third unramified cohomology group to give an example of a smooth, projective, geometrically rational variety X defined over a finite field Fp, such that the map from the Chow group of codimension two cycles on X to the Chow group of codimension two cycles over an algebraic closure, fixed by the Galois action, is not surjective. In chapter II.2, we prove the vanishing of the third unramified cohomology group for certain fibrations over a surface defined over a finite field whose generic fibre is a Severi-Brauer variety. In chapter II.3, we show that certain terms of the Bloch-Ogus spectral sequence are birational invariants for varieties over fields of bounded cohomological dimension. Then in the case of a finite field, we relate one of these invariants to the cokernel of the l-adic cycle class map for 1-cycles. Finally, in chapter II.4, we establish a “bound” for ramification of elements of the group Hr(K, Z/n), r>0, where K is the function field of an integral variety defined over a field of characteristic zero.
4

Deux contributions à l'arithmétique des variétés : r-équivalence et cohomologie non ramifiée.

Pirutka, Alena 12 October 2011 (has links) (PDF)
Dans cette thèse, on s'intéresse à des propriétés arithmétiques de variétés algébriques. Elle contient deux parties et huit chapitres que l'on peut lire indépendamment. Dans la première partie on étudie la R-équivalence sur les points rationnels des variétés algébriques. Dans le chapitre I.1 on établit que pour certaines familles projectives et lisses X→Y de variétés géométriquement rationnelles sur un corps local k de caractéristique nulle le nombre des classes de R-équivalence de la fibre Xy(k) est localement constant quand y varie dans Y(k). Dans le chapitre I.2 on s'intéresse à des variétés rationnellement simplement connexes. On établit que la R-équivalence est triviale sur de telles variétés définies sur C(t). Dans le chapitre I.3 on introduit une autre relation d'équivalence sur les points rationnels des variétés définies sur un corps muni d'une valuation discrète et on étudie quelques propriétés de cette relation d'équivalence. Dans le chapitre I.4 on étudie la R-équivalence sur les variétés rationnellement connexes définies sur les corps réels clos ou p-adiqument clos. La deuxième partie de cette thèse est consacrée à l'étude de quelques questions liées à la cohomologie non ramifiée. Dans le chapitre II.1 on utilise le troisième groupe de cohomologie non ramifiée pour donner un exemple d'une variété projective et lisse géométriquement rationnelle X, définie sur un corps fini Fp, telle que l'application de groupes de Chow de codimension deux de la variété X dans le groupe de Chow de cycles de codimension deux sur la clôture algébrique, fixés par l'action de Galois, n'est pas surjective. Dans le chapitre II.2 on s'intéresse aux fibrations au-dessus d'une surface sur un corps fini dont la fibre générique est une variété de Severi-Brauer et on montre que le troisième groupe de cohomologie non ramifiée s'annule pour de telles variétés. Dans le chapitre II.3, on établit l'invariance birationnelle de certains termes de la suite spectrale de Bloch et Ogus pour des variétés sur un corps de dimension cohomologique bornée. Sur un corps fini, on relie un de ces invariants avec le conoyau de l'application classe de cycle l-adique pour les 1-cycles. Dans le chapitre II.4, on s'intéresse à "borner" la ramification des éléments des groupes de cohomologie Hr(K, Z/n), r>0, si K est le corps des fonctions d'une variété intègre définie sur un corps de caractéristique nulle k.
5

La trace en géométrie projective et torique.

Weimann, Martin 20 June 2006 (has links) (PDF)
On étudie la notion de trace et les problèmes d'Abel-inverse à<br />l'aide du calcul résiduel dans les cadres projectifs et toriques.<br />Dans la première partie, on obtient une caractérisation algébrique des formes traces sur une hypersurface analytique à l'aide du calcul résiduel élémentaire d'une variable. En conséquence, une version plus forte du théorème d'Abel-inverse de Henkin et Passare est prouvée. On montre que ce théorème est conséquence de la rigidité d'un système différentiel particulier lié à une équation de type ”onde de choc” et on établit le lien avec le théorème de Wood sur l'algébricité d'une famille de germes d'hypersurfaces analytiques. Enfin, on obtient une nouvelle méthode pour calculer la dimension de l'espace des formes abéliennes de degré maximal sur une hypersurface projective.<br />Dans la seconde partie, on caractérise de manière combinatoire les familles de fibrés en droites permettant de définir une notion intrinsèque de concavité dans une variété torique complète lisse et on étudie les ensembles analytiques dégénérés correspondants. On étend ainsi la notion de trace au cas torique. Courants résidus, résidus toriques et résultants donnent une borne optimale sur le degrés des traces en les différents paramètres. Si la variété torique est projective, on obtient finalement une version torique des théorèmes de Wood et d'Abel-inverse, permettant une description plus précise du support du polynôme construit dans le cas hypersurface.
6

Around rationality of algebraic cycles / De la rationalité des cycles algébriques

Fino, Raphaël 03 October 2014 (has links)
Soient $X$ et $Y$ des variétés au dessus d’un corps $F$. Dans de nombreuses situations, il s’avère important de savoir si un cycle algébrique modulo équivalence rationnelle y sur Y, défini au dessus du corps des fonctions $F(X)$ de $X$, est en fait déjà défini au niveau du corps de base $F$. Dans cet essai, on traite de cette question, en faisant varier la variété $X$ parmi des variétés telles que des quadriques, des variétés projectives homogènes ou des espaces principaux homogènes. Dans chaque situation, on utilise des outils appropriés tels que les opérations de Steenrod, des résultats de décomposition motivique, ou certains invariants cohomologiques de groupes algébriques. / Let $X$ and $Y$ be some varieties over a field $F$. In many situations, it is important to know if an algebraic cycle modulo rational equivalence $y$ on $Y$ defined over the function field $F(X)$ of $X$ is actually defined over the base field $F$. In this dissertation, we study that matter, making the variety $X$ vary among varieties such as quadrics, projective homogeneous varieties or principal homogeneous spaces. In each situation, we use appropriate tools, such as Steenrod operations, motivic decomposition results or cohomological invariants of algebraic groups.

Page generated in 0.0507 seconds