Return to search

Longevity gene IGF-1 and adult neurogenesis : regulation of lifelong neuronal replacement, olfactory function and metabolism / Gène de longévité IGF-1 et neurogénèse adulte : régulation du renouvellement neuronal à long-terme, de la fonction olfactive et du métabolisme

Pas de résumé / Production of new neurons in the brain decreases dramatically with age due to progressive physiological depletion of stem and progenitor cell populations (NSCs). Recent studies indicate that circulating factors constitute a systemic aging milieu regulating the birth of new cells. Interestingly, some long-lived mouse strains such as Ames dwarf mutants, with low circulating levels of GH and IGF-1, show increased neurogenesis and preserved hematopoietic stem cell pool. Thus, the possibility that genes regulating lifespan and aging also quantitatively modulate stem cells in mammals is more and more explored. IGF-1 plays a pivotal role in aging in different species, and I am asking whether some of the well-known longevity effects resulting from down-regulation of this signaling pathway could be explained by local regulation of stem and progenitor cell compartments. To validate this hypothesis, I pursued a dual approach based on biological experiments and mathematical modeling. Using a novel triple transgenic mouse model, I inactivated IGF-1 signaling specifically in adult NSCs, and traced knockout cell lineages with a fluorescent reporter transgene. By analyzing the phenotype at different time points after KO induction, I could distinguish between short and long-term effects of IGF signaling on cellular regeneration and identify cumulative physiological consequences of down-regulation of this pathway using behavioral tests. In my mathematical models, the dynamics of regenerative cell populations were described by a set of differential equations depending on circulating “growth-factor like molecules” (GFs). My results suggest that in aging tissues, the optimal distribution of GFs is a function that decreases with time. In the olfactory system, I showed that inactivation of IGF signaling in adult NSCs enhanced long-term maintenance of neuroblasts and increased the overall production of neurons. Mutants started with the same number of adult-born neurons as controls one month after KO induction at 4 months of age, but ended up having significantly more differentiated cells integrating the olfactory bulb at long-term, i.e. at 16 months of age. This highly increased neurogenic activity occurred without depletion of neural stem/progenitor cell compartments. In contrast, IGF-1R deletion in adult hippocampal stem cells did not change neurogenesis dynamics, pointing out a niche-dependent effect of IGFs. The important cellular changes in the olfactory bulb led to improved olfactory memory and odor discrimination in aged mutants. Strikingly, mutants also displayed altered energy homeostasis and increased sensitivity to metabolic hormones, namely leptin and insulin. This metabolic shift could be linked to enhanced olfactory function, and to changes in hypothalamic neurogenesis. Indeed, we observed that IGF-1R deletion in hypothalamic stem cells (HySC) protected α-tanycyte pool from age-related decline and increased the number of newborn neurons in the hypothalamus. Taken together, my results validate the hypothesis that life-long inhibition of IGF signaling in adult NSCs delays age-related decline of neurogenesis, in a niche-dependent manner. These data also show that local modulation of neural cell replacement has important physiological effects at the level of the whole organism, pointing out a novel pathophysiological role for adult neurogenesis.

Identiferoai:union.ndltd.org:theses.fr/2014PA05T052
Date28 November 2014
CreatorsChaker, Zayna
ContributorsParis 5, Holzenberger, Martin
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0021 seconds