Return to search

The effects of low-emissivity window films on thermal comfort and energy performance of a historic stone building in cold climate: computer simulations with "IDA ICE"

Low-emissivity (low-E) window films are designed to improve the energy performance of windows and prevent indoor overheating by solar radiation. These films can be applied to different types of glazing units without the need for changing the whole window. This characteristic offers the possibility to improve the energy performance of the window of old and historic buildings for which preservation regulations say windows should remain more or less unchanged. This research aims to figure out to what extent a low-E window film can improve thermal comfort and energy performance of an old three-storey historic stone building in the cold climate of Mid-Sweden. In this research, first, with help of the simulation software “IDA ICE”, the entire building was modelled without window films in a one-year simulation. Second step was to add the low-E window films (3M Thinsulate Climate Control 75 (CC75)) to all the windows and repeat the simulation. Comparison between the results of the two cases revealed an improvement in energy use reduction as well as the thermal comfort when applying the films. For the application of the window films, a cost analysis using payback method was carried out which showed a long- time payback period. Although an investment with a long-time payback period is considered as a disadvantage, for historic buildings with very strict retrofit regulations specially when it comes to the building’s facades, application of the low-emissivity window films for better energy performance and thermal comfort is among the recommendable measures, but not necessarily the best.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:hig-30145
Date January 2019
CreatorsAbolghasemi Moghaddam, Saman
PublisherHögskolan i Gävle, Avdelningen för byggnadsteknik, energisystem och miljövetenskap
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0019 seconds