• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 4
  • 1
  • Tagged with
  • 12
  • 12
  • 9
  • 8
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

ENERGY ASSESMENT FOR MODULARDETACHED BUILDINGS : Case studies, Sweden and Spain.

Alba Vázquez, Cira January 2018 (has links)
Energy assessment in buildings is an essential topic in order to achieve the set goals for energy efficiency. This thesis investigated the energy consumption in various scenarios in Husmuttern’s buildings. Different purposes (school and apartment), locations (Spain and Sweden) and materials combinations are modelled and analysed. The models were created in the building performance simulation tool IDA ICE. After the yearly energy demand results were obtained they were processed and analysed. Then several factors were changed in the model in order to investigate different impacts in the energy consumption of the building, such as the overall heat transfer, hot water consumption, windows and doors. Also, PV panels were installed in the model to obtain the potential penetration of renewable energy in the buildings. The results showed the different consumption in the buildings depending on the purpose and location, and the impact of the changed factors in the overall energy consumption. The change of windows to more efficient ones showed that the apartments improve their consumption more than the schools, especially in when the Spanish location is considered. This case also had the biggest possible change when the hot water demand is varied. Whereas if the door was the changed, the Swedish apartment has the most possible improvement.
2

Viability and Accessibility of Urban Heat Island and Lake Microclimate Data over current TMY Weather Data for Accurate Energy Demand Predictions.

Weclawiak, Irena Anna 29 June 2022 (has links)
No description available.
3

Energy efficiency in commercial buildings in South Africa : A study of interior ceiling temperature distribution and measures to decrease the cooling demand in buildings in Pretoria, South Africa

Göthberg, Astrid, Tasevski, Josephine January 2020 (has links)
This study aims to investigate opportunities to make commercial buildings in Pretoria, South Africa, more energy efficient, which is made by examining prerequisites in South Africa. To achieve this objective, barriers and measures to decrease cooling demand are investigated by a qualitative approach and a roof heat transfer model is developed to get a deeper understanding of the ceiling temperature distribution. The heat transfer model is simulated in MATLAB and is further validated by conducting a two-case scenario sensitivity analysis and by comparing the results to previous research. The results show that there is a great correlation between the Global Horizontal Irradiance [GHI] and the interior ceiling temperature and a higher GHI contributes to a higher ceiling temperature. The hot climate and the long summer period in South Africa indicate that there is a great demand for cooling during a year. Regarding barriers, the socioeconomic aspects in the country and the low electricity prices may contribute to less willingness to adapt to an environmentally friendly behaviour. As some technologies are still perceived as expensive, this may also provide a lower willingness to make changes regarding choices that contribute to a lower cooling demand and thus, energy consumption. Finally, it is concluded that there are several measures that can be applied to decrease the cooling demand, such as constructional changes or enhancement of the heating, ventilation and air-conditioning [HVAC] operation.
4

Electricity Projection with Peak Load Shifting Strategy in Wuxi Sino-Swedish Eco-City

Su, Chang January 2013 (has links)
Wuxi Sino-Swedish Eco-City, a pilot city region with an area of 2.4 km2, is a demonstration project for innovation in energy technology and integrated smart city solutions in China. After the 1st phase of the project, general outlines of the city’s energy system were drawn and applicable technologies are provided. However, no work has been performed on building electricity load projection and load analysis. This thesis will therefore firstly focus on establishing the building electricity load projection model, using simulation software STELLA. Then the model is scaled up for the whole city region. The simulation results show that there is foreseen to be electricity peak in summer and winter, due to the cooling and heating demand. Based on simulation results, an electricity DSM (demand side management) strategy should be implemented in order to balance the load. Peak load shifting strategy is thus chosen to be investigated. Two technology options (ice-storage system and thermal storage system), which could be implemented to balance the electricity peak, is analyzed by scenarios. Also, commercial feasibility of implementing such technologies is discussed. / Wuxi Taihu Sino-Swedish Eco-City
5

The effects of low-emissivity window films on thermal comfort and energy performance of a historic stone building in cold climate: computer simulations with "IDA ICE"

Abolghasemi Moghaddam, Saman January 2019 (has links)
Low-emissivity (low-E) window films are designed to improve the energy performance of windows and prevent indoor overheating by solar radiation. These films can be applied to different types of glazing units without the need for changing the whole window. This characteristic offers the possibility to improve the energy performance of the window of old and historic buildings for which preservation regulations say windows should remain more or less unchanged. This research aims to figure out to what extent a low-E window film can improve thermal comfort and energy performance of an old three-storey historic stone building in the cold climate of Mid-Sweden. In this research, first, with help of the simulation software “IDA ICE”, the entire building was modelled without window films in a one-year simulation. Second step was to add the low-E window films (3M Thinsulate Climate Control 75 (CC75)) to all the windows and repeat the simulation. Comparison between the results of the two cases revealed an improvement in energy use reduction as well as the thermal comfort when applying the films. For the application of the window films, a cost analysis using payback method was carried out which showed a long- time payback period. Although an investment with a long-time payback period is considered as a disadvantage, for historic buildings with very strict retrofit regulations specially when it comes to the building’s facades, application of the low-emissivity window films for better energy performance and thermal comfort is among the recommendable measures, but not necessarily the best.
6

Fjärrkyla i Sundsvall : Optimering av framledningskurva för akviferbaserad fjärrkyla

Unger, Oskar January 2019 (has links)
På uppdrag av Sundsvall Energi AB har FVB Sverige AB påbörjat en förstudie kring etableringen av fjärrkyla i Sundsvall. Produktionsmedlen i det planerade nätet kommer att innefatta frikyla från akviferen och en kompressordriven kylmaskin. Det övergripande syftet med projektet har dels varit att ta fram en optimal framledningskurva, samt att ta reda på i vilken utsträckning frikylan kan nyttjas innan kylmaskinen måste användas som spetsproduktionsmedel. Projektet har inledningsvis fokuserat på att undersöka hur klimatet och kylbehovet ser uti Sundsvall. Kylbehovet granskades utifrån sex befintliga byggnader som nyttjar dricksvattenkyld fjärrkyla i Sundsvall. Därefter undersöktes olika typer av klimatsystem för att utröna vad de har för krav på framledningstemperaturen. Det konstaterades att kylbatterier var den komponent som kräver lägst framledningstemperatur, varför kyleffektberäkningar utfördes på dem. Resultatet ur kylbatteriberäkningarna fick motsvara den av fjärrkylenätet avgivna kyleffekten vid varierande utomhustemperatur. Genom att väga den avgivna kyleffekten vid varierande framledningstemperatur mot det erforderliga kyleffektbehovet vid varierande utomhustemperatur kunde framledningskurvan ta form. Akviferen antas hålla en temperatur på omkring 7°C till 9°C året runt, men utgångspunkten i detta projekt har varit att den konstant är 9°C. Under de förutsättningarna har framledningstemperaturen kunnat bestämmas till att vara 11°C under större delen av året, men att den sänks vid en utomhustemperatur på omkring 21°C i varierande grad ned till 6°C vid utomhustemperaturen 25°C. Med hjälp av framledningskurvan kunde därefter frikylans täckningsgrad bedömas. Resultatet visar att om framledningens temperatur höjs med 0,5–1,0°C i distributionsnätet kommer kylmaskinen att behöva vara i drift under 159 timmar per år. Om istället uppvärmningen blir 1,5° eller 2,0°C kommer kylmaskinen behöva vara i drift under 233 timmar respektive 325 timmar. Sammantaget har samtliga av projektets konkreta och verifierbara mål besvarats. / On behalf of Sundsvall Energi AB, FVB Sverige AB has initiated a preliminary study on the establishment of a district cooling system in Sundsvall. The main source for the cooling will be cool water drawn from the aquifer and a compressor chiller. The main purpose of this project has both been to provide the optimal supply temperature of the cooling network at different outdoor temperatures, and to find out to what extent the cool water from the aquifer can be used by itself as the cooling source. The project was initially focused on examining the climate and cooling demand in Sundsvall. The cooling demand was examined on the basis of six existing buildings that uses freshwater district cooling, and different types of climatesystems were then examined to ascertain what their requirements for the supply temperature are. Cooling coil batteries were found to be the component that requires the lowest supply temperature; therefore, the cooling power calculations were relied on them. The outcome of the cooling coil battery calculations was presumed to correspond to the cooling power of the network itself. By comparing the cooling power of the coil batteries at different supply temperatures and the cooling demand at different outdoor temperatures the main supply temperature for the district cooling network took shape. The aquifer is expected to maintain a temperature of approximately 7°C to 9°C, but in this project the temperature is set to exactly 9°C. On those premises the supply temperature of the cooling network could be set to 11°C for most of the year, but with a reduction of the supply temperature at outdoor temperatures around 21°C. Subsequently the supply temperature is reduced to 6°C at the outdoor temperature 25°C. Via the supply temperature curve, the aquifer cooling coverage ratio could be assessed. The result shows that if the supply temperature is raised between 0,5°C and 1,0°C in the distribution network the compressor chiller will have to be in operation for 159 hours per year. If instead the supply temperature is raised 1,5°C or 2,0°C, the compressor chiller must be in operation for 233 hours and 325 hours, respectively. In summary, all the goals and targets of the project have been completed.
7

Design a PV – system for a large building

Martinovic, Zarko January 2014 (has links)
This study presents the complete design of a photovoltaic system in commercial buildings. PV installation for Multiarena was primary used for internal consumption, rest of production will be sent according intentions in grid. Project presents theoretical demand calculations for building consumptions. According to the theoretical calculations numerical study has been provided by software Indoor Climate and Energy program. Detailed electric optimization strategy can be founded in project description, as well as the sizing of the photovoltaic installation and economic and financial issues related to it. Study presents several models for photovoltaic system and their economic analysis. Environmental issues can be founded at the end of the study.
8

Posouzení návratnosti investice do pasivního a standardního rodinného domu / Assessing the Return on Investment in a Passive and Standard House

Krus, Tomáš January 2017 (has links)
The aim of this thesis is to compare economic investment in passive houses and conventional construction of a house. Furthermore, this thesis is focused on introducing problematics connected to construction of passive house, main characteristics, differences in used materials including review of advantages and disadvantages of their implementation. Assessment is based on return ability of initial investments generated by lowering operational costs. Main part of this thesis is aimed on compression of costs both before and in use of a house.
9

Resilient cooling technologies : Simulation study to determine the cooling capacity in old residentialbuildings located in mid-Sweden

Ali, Ali Talib January 2022 (has links)
The Long-term changes in the climate conditions have increased the need foradequate thermal comfort systems. These alternations influence extremeevents, which their intensity and frequency have increased over the past years.Moreover, this study focuses on space cooling and parameters that the systemshould have to be considered as resilient. Literature study was done to presentthe concept of resilience as well as the different methods used to provide spacecooling. In addition, the cooling systems suggested in this study, which aredistrict cooling and absorption cooling, were presented and explained.Furthermore, the study focuses on cooling demand in a group of residentialbuildings based on different thermal characteristics, which were implementedbased on building regulations from late 1960s to early 1980s. The buildingthermal properties were used as input to obtain their cooling demand by usingbuilding energy simulation tool. Based on the acquired results, an evaluationhas been made for the cooling demand of those buildings. Further analysispresented a correlation between the cooling demand and thermal properties ofthe buildings and aided in the determination of the required cooling capacity.The selection of the capacities was based on the resilience criterion as the systemhas to be able to provide adequate performance and safety for the occupantsduring extreme events. Furthermore, an assessment was done to compare thesuggested system based on their capacities and the primary energy use.
10

Utformningens betydelse för energiförbrukningen : En fallstudie av verksamhetsbyggnader / Design's impact on energy consumption : A case study of business buildings

Ritz, Carolina, Mattsson-Mårn, Malin January 2015 (has links)
Purpose: The building sector accounts for 40 % of the total energy consumption in Sweden today, and the largest proportion is consumed during the operating phase. From the year 2020 and onwards, all new buildings should be erected as zero-emissionbuildings. The building’s design can reduce energy demands, but the current legal requirements do not favour energy-efficient designs. This study focuses on the design’s importance for the energy efficiency of buildings, i.e., energy-saving design. The impact of specific measures is difficult to calculate due to the complexity of reality. This study aims to highlight the measures that could reduce energy consumption in commercial buildings. Method: In order to provide answers to the issues stated in the report and to achieve the objective of the study, case studies are being conducted investigating three commercial buildings where deliberate decisions were made to use energy-reducing measures. Results and conclusions are based on qualitative interviews and literature studies. Findings: The energy-reducing design measures found to be of most importance used in the studied buildings are the form factor, the window portion and the thermal storage capacity. Moreover, significant savings are possible by carefully consider how solar energy can be limited or used in the building. Generally, buildings tends to become more technical, therefore technical knowledge early in the process is important to reach a good result. Economic incentives and clear objectives with right focus are also important for optimizing a building’s energy performance. The wording and the requirement levels in the Swedish building regulations highly controls the construction of energy efficient buildings. Implications: This study shows how energy efficient design is made today and provides an indication of what can be done and what should be prioritized. By imposing requirements on consumed energy instead of bought, energy efficient design could be favoured. Furthermore, this study suggests that a balance between windows, façade and solar shading are important energy-reducing measures. Regardless of selected energyreducing measures, a good performance is essential. Finally, this study shows that a methodical use of existing knowledge and technology makes a difference. Limitations: A lifecycle approach provides an overall picture of a building’s energy consumption. However, this study is based on the energy consumption during the operating phase. The result of this study does not take economic or aesthetic factors into account. This study is a comparative case study and is based on few but carefully matched cases. The selected cases are commercial buildings where deliberate decisions were made to use energy-reducing measures.

Page generated in 0.1048 seconds