At the present day the idea of cosmological inflation constitutes an important extension of Big Bang theory. Since its appearance in the early 1980’s many physical mechanisms have been worked out that put the inflationary expansion of space that proceeds the Hot Big Bang on a sound theoretical basis. Among the achievements of the theory of inflation are the explanaition of the almost Euclidean geometry of ‘visible’space, the homogeneity of the cosmic background radiation but, in particular, also the tiny inhomogeneity of a relative amplitude of 10−5. In many models of inflation the inflationary phase ends only locally. Hence, there exists the possibility that the inflationary process still goes on in regions beyond our visual horizon. This property is commonly termed ‘eternal inflation’. In the framework of a cosmological scalar fields, eternal inflation can manifest itself in a variety of ways. On the one hand fluctuations of the field, if sufficiently large, can work against the classical trajectory and therefore counteract the end of inflation. In regions where this is the case the accelerated expansion of space continues at a higher rate. In parts of this region the process may replicate itself again and in this way may continue throughout all of time. Space and field are said to reproduce themselves. On the other hand, a mechanism that can occur in addition or independent of the latter, is so called vacuum tunneling. If the potential of the scalar field has several local minima, a semi-classical calculation suggests that within a spherical region, a bubble, the field can tunnel to another state. The respective tunneling rates depend on the potential difference and the shape of the potential between the states. Generally, the tunneling rate is exponentially suppressed, which means that the inflation lasts for a long time before tunneling takes place. The ongoing inflationary process effectively reduces local curvature, anistotropy and inhomogeneity, so that this property is known as the ‘cosmic no-hair conjecture’. For this reason cosmological considerations of the evolution of bubbles thus far almost entirely involved vacuum (de Sitter) backgrounds. However, new insights in the framework of string theory suggest high tunneling rates which allow for the possibility of bubble nucleation in non-vacuum dominated backgrounds. In this case the evolution of the bubble depends on the properties of the background spacetime. A deeper introduction in chapter 4 is followed by the presentation of the Lemaître-Tolman spacetime in chapter 5 which constitutes the background spacetime in the study of the effect of matter and inhomogeneity on the evolution of vacuum bubbles. In chapter 6 we explicitly describe the application of the ‘thin-shell’ formalism and the resulting system of equations. This is succeeded in chapter 7 by the detailed analysis of bubble evolution in various limits of the Lemaître-Tolman spacetime and a Robertson-Walker spacetime with a rapid phase transition. The central observations are that the presence of dust, at a fixed surface energy density, goes along with a smaller nucleation volume and possibly leads to a a collapse of the bubble. In an expanding background, the radially inhomogeneous dust profile is efficiently diluted so that there is essentially no effect on the evolution of the domain wall. This changes in a radially inhomogeneous curvature profile, positive curvature decelerates the expansion of the bubble. Moreover, we point out that the adopted approach does not allow for a treatment of a, physically expected, matter transfer so that the results are to be understood as preliminary under this caveat. In the second part of this thesis we consider potential observable consequences of bubble collisions in the cosmic microwave background radiation. The topological nature of the signal suggests the use of statistics that are well suited to quantify the morphological properties of the temperature fluctuations. In chapter 10 we present Minkowski Functionals (MFs) that exactly provide such statistics. The presented error analysis allows for a higher precision of numerical MFs in comparison to earlier methods. In chapter 12 we present the application of our algorithm to a Gaussian and a collision map. We motivate the expected MFs and extract their numerical counterparts. We find that our least-squares fitting procedure accurately reproduces an underlying signal only when a large number of realizations of maps are averaged over, while for a single WMAP and PLANCK resolution map, only when a highly prominent disk, with |δT| = 2√σG and ϑd = 40◦, we are able to recover the result. This is unfortunate, as it means that MF are intrinsically too noisy to be able to distinguish cold and hot spots in the CMB for small sizes. / Die Idee der kosmologischen Inflation stellt heute die wichtigste Erweiterung der klassischen Urknalltheorie dar. Seit ihrem Aufkommen in den frühen 80er Jahren sind zahlreiche physikalische Mechanismen bekannt und ausgearbeitet geworden, die die inflationäre Expansion des Raums vor der dem ‘heißen’ Urknall auf eine tragfähige, theoretische Basis stellen. Zu den Errungenschaften der Inflationstheorie zählen unter Anderem die Erklärung der nahezu Euklidischen Geometrie des sichtbaren Raums, die bemerkenswerte Homogenität der kosmischen Hintergrundstrahlung, im Besonderen aber auch die ihr innewohnenden winzigen Unregelmäßigkeiten mit einer relativen Amplitude der Größenordnung 10−5. In vielen Inflationsmodellen endet die Inflation allerdings nur lokal. Demzufolge besteht die Möglichkeit, dass es außerhalb des von uns sichtbaren Raums Gebiete geben kann, in denen der inflationäre Prozess weiterhin stattfindet. Dieser Eigenschaft wird durch den Begriff ‘Ewige Inflation’ Rechnung getragen. Ewige Inflation kann sich im Rahmen der Skalarfeld-Inflation in verschiedenen Formen manifestieren. Zum Einen können die Fluktuationen des Feldes so groß sein, dass sie der klassischen Trajektorie, und damit dem Ende der Inflation, entgegenwirken wirken. In Regionen, in denen das geschieht, setzt sich die beschleunigte Expansion des Raums mit einer höheren Rate weiter fort. In Teilen solcher Regionen mag sich dies wiederholen und der Vorgang auf diese Weise theoretisch bis ins Unendliche andauern. Raum und Feld reproduzieren sich selbst. Eine weitere Möglichkeit, die sowohl unabhängig als auch zusätzlich zur zuvor beschriebenen auftreten kann, ist die des sogenannten Vakuumtunnelns. Wenn das Potential des Skalarfelds mehrere lokale Minima aufweist, so legt eine semi-klassische Rechnung, dass das Feld innerhalb eines sphärischen Gebiets, einer Blase, in einen anderen Zustand tunneln kann. Fortwährende Inflation beseitigt großräumig, effektiv, jegliche Form der Unregelmäßigkeit, d. h. Raumkrümmung, Anisotropie und Inhomogenität, sodass dieser Sachverhalt unter dem Ausdruck ‘cosmic no-hair conjecture’ bekannt ist. Aus diesem Grund waren bisherige Betrachtungen fast aussschließlich der Entwicklung von Blasen in einem Vakuumhintergrund gewidmet. Neue Überlegungen im Rahmen der Stringtheorie erlauben allerdings auch hohe Tunnelraten, sodass die Möglichkeit der Nukleation von Blasen in nicht-vakuumdominierten Hintergründen besteht. Die weitere Entwicklung hängt in diesem Fall von den Eigenschaften des Hintergrunds ab. Nach der Ableitung der Vakuumlösung wird sukzessive auf die Blasenentwicklung in einem statischen Hintergrund, in einem dynamischen, aber homogenen Hintergrund, in einem flachen, inhomogenen Hintergrund, in einem gekrümmten, inhomogenen Hintergrund und in einem homogenen Hintergrund mit Phasenübergang eingegangen. Zu den zentralen Beobachtungen gehört, dass die Präsenz des Staubs, bei fixierter Oberflächendichte, eine Verringerung des Nukleationsvolumens mit sich bringt und dazu führen kann, dass die Blase einen Kollaps beginnt. Das ändert sich in einem radial inhomogenen Krümmungsprofil, positive Raumkrümmung hat einen abbremsenden Effekt auf die Expansion der Blase. Es wird herausgestellt, dass der verwendete Ansatz keine Möglichkeit zur Behandlung eines, physikalisch zu erwartenden, Materietransfers bietet und die damit erzielten Ergebnisse unter diesem Vorbehalt zu verstehen sind. Im zweiten Teil der vorliegenden Arbeit wird potentiell beobachtbaren Konsequenzen der Kollision zweier Blasen in der kosmischen Hintergrundstrahlung nachgegangen. Die topologische Natur des Signals in der letzten Streufläche legt die Verwendung von Statistiken nahe, die es erlauben, die morphologischen Eigenschaften der Temperaturfluktuationen zu quantifizieren. Diese Statistiken bieten die Minkowski Funktionale (MF), die in Kapitel 10 vorgestellt werden. Dieses wird benutzt um Karten eines Gaussschen Zufallsfeldes zu erzeugen und die entsprechenden MF zu berechnen. Die vorgestellte Fehleranalyse erlaubt eine höhere Präzision der numerischen MF im Vergleich zu bisherigen Methoden. Ein Fit der geringsten quadratischen Abweichung reproduziert die tatsächlichen Parameter nur dann, wenn über eine hohe Anzahl von Realisierungen gemittelt wird, wohingegen die Betrachtung einer einzigen Karte in WMAP bzw. Planck Auflösung nur für “auffällige” Scheiben mit Temperaturunterschied δT = 2√σG und Öffnungswinkel ϑd = 40◦ Übereinstimmung erreicht wird. Dies bedeutet, das MF ein schlechtes ‘Signal zu Rausch’Verhältnis besitzen um heiße oder kalte Scheiben in der kosmischen Hintergrundstrahlung zu erfassen.
Identifer | oai:union.ndltd.org:uni-wuerzburg.de/oai:opus.bibliothek.uni-wuerzburg.de:5490 |
Date | January 2011 |
Creators | Simon, Dennis |
Source Sets | University of Würzburg |
Language | English |
Detected Language | English |
Type | doctoralthesis, doc-type:doctoralThesis |
Format | application/pdf |
Rights | https://creativecommons.org/licenses/by-nc-nd/3.0/de/deed.de, info:eu-repo/semantics/openAccess |
Page generated in 0.0033 seconds